Previous |  Up |  Next

Article

Keywords:
left distributivity; left idempotency; variety
Summary:
It is an open question whether the variety generated by the left divisible left distributive groupoids coincides with the variety generated by the left distributive left quasigroups. In this paper we prove that every left divisible left distributive groupoid with the mapping $a\mapsto a^2$ surjective lies in the variety generated by the left distributive left quasigroups.
References:
[1] Barboriková, J.: Systémy automatického dokazování (Systems of automated reasoning). bachelor thesis, Charles University, Praha, 2009, (in Czech).
[2] Dehornoy, P.: Braids and Self-Distributivity. Progress in Mathematics 192, Birkhäuser, Basel, 2000. MR 1778150 | Zbl 0958.20033
[3] Drápal, A., Kepka, T., Musílek, M.: Group Conjugation has Non-Trivial LD-Identities. Comment. Math. Univ. Carol. 35 (1994), 219–222. MR 1286567 | Zbl 0810.20053
[4] Jedlička, P.: On left distributive left idempotent groupoids. Comm. Math. Univ. Carol. 46, 1 (2005), 15–20. MR 2175855 | Zbl 1106.20049
[5] Joyce, D.: A Classifying Invariant of Knots, the Knot Quandle. J. Pure App. Alg. 23 (1982), 37–56. DOI 10.1016/0022-4049(82)90077-9 | MR 0638121 | Zbl 0474.57003
[6] Kepka, T.: Notes On Left Distributive Groupoids. Acta Univ. Carolinae – Math. et Phys. 22, 2 (1981), 23–37. MR 0654379 | Zbl 0517.20048
[7] Larue, D.: Left-Distributive Idempotent Algebras. Commun. Alg. 27, 5 (1999), 2003–2029. DOI 10.1080/00927879908826547 | MR 1683848 | Zbl 0940.20070
[8] Stanovský, D.: On the equational theory of group conjugation. In: Contributions to General Algebra 15, Heyn, Klagenfurt, 2004, 177–185. MR 2082381 | Zbl 1076.20062
Partner of
EuDML logo