[1] Cīrulis, J.:
Multipliers in implicative algebras. Bull. Sect. Log. (Łódź) 15 (1986), 152–158.
MR 0907610 |
Zbl 0634.03067
[2] Cīrulis, J.:
Multipliers, closure endomorphisms and quasi-decompositions of a Hilbert algebra. In: Chajda et al., I. (eds) Contrib. Gen. Algebra Verlag Johannes Heyn, Klagenfurt, 2005, 25–34.
MR 2166943 |
Zbl 1082.03056
[5] Diego, A.:
Sur les algèbres de Hilbert. Gauthier-Villars; Nauwelaerts, Paris; Louvain, 1966.
MR 0199086 |
Zbl 0144.00105
[7] Horn, A.:
The separation theorem of intuitionistic propositional calculus. Journ. Symb. Logic 27 (1962), 391–399.
DOI 10.2307/2964545 |
MR 0171706
[9] Huang, W., Wang, D.:
Adjoint semigroups of BCI-algebras. Southeast Asian Bull. Math. 19 (1995), 95–98.
MR 1366413 |
Zbl 0859.06016
[10] Iseki, K., Tanaka, S.:
An introduction in the theory of BCK-algebras. Math. Japon. 23 (1978), 1–26.
MR 0500283
[11] Karp, C. R.: Set representation theorems in implicative models. Amer. Math. Monthly 61 (1954), 523–523 (abstract).
[12] Karp, C. R.:
Languages with expressions of infinite length. Univ. South. California, 1964 (Ph.D. thesis).
MR 0176910 |
Zbl 0127.00901
[15] Schmidt, J.:
Quasi-decompositions, exact sequences, and triple sums of semigroups I. General theory. II Applications. In:Contrib. Universal Algebra Colloq. Math. Soc. Janos Bolyai (Szeged) 17 North-Holland, Amsterdam, 1977, 365–428.
MR 0472657
[16] Tsinakis, C.:
Brouwerian semilattices determined by their endomorphism semigroups. Houston J. Math. 5 (1979), 427–436.
MR 0559982 |
Zbl 0431.06003
[17] Tsirulis, Ya. P.:
Notes on closure endomorphisms of implicative semilattices. Latvijskij Mat. Ezhegodnik 30 (1986), 136–149 (in Russian).
MR 0878277