Previous |  Up |  Next

Article

Keywords:
adjoint semilattice; Brouwerian extension; closure endomorphism; compatible meet; filter; Hilbert algebra; implicative semilattice; subtraction
Summary:
Let $A := (A,\rightarrow ,1)$ be a Hilbert algebra. The monoid of all unary operations on $A$ generated by operations $\alpha _p\colon x \mapsto (p \rightarrow x)$, which is actually an upper semilattice w.r.t. the pointwise ordering, is called the adjoint semilattice of $A$. This semilattice is isomorphic to the semilattice of finitely generated filters of $A$, it is subtractive (i.e., dually implicative), and its ideal lattice is isomorphic to the filter lattice of $A$. Moreover, the order dual of the adjoint semilattice is a minimal Brouwerian extension of $A$, and the embedding of $A$ into this extension preserves all existing joins and certain “compatible” meets.
References:
[1] Cīrulis, J.: Multipliers in implicative algebras. Bull. Sect. Log. (Łódź) 15 (1986), 152–158. MR 0907610 | Zbl 0634.03067
[2] Cīrulis, J.: Multipliers, closure endomorphisms and quasi-decompositions of a Hilbert algebra. In: Chajda et al., I. (eds) Contrib. Gen. Algebra Verlag Johannes Heyn, Klagenfurt, 2005, 25–34. MR 2166943 | Zbl 1082.03056
[3] Cīrulis, J.: Hilbert algebras as implicative partial semilattices. Centr. Eur. J. Math. 5 (2007), 264–279. DOI 10.2478/s11533-007-0008-2 | MR 2300273 | Zbl 1125.03047
[4] Curry, H. B.: Foundations of Mathematical logic. McGraw-Hill, New York, 1963. MR 0148529 | Zbl 0163.24209
[5] Diego, A.: Sur les algèbres de Hilbert. Gauthier-Villars; Nauwelaerts, Paris; Louvain, 1966. MR 0199086 | Zbl 0144.00105
[6] Henkin, L.: An algebraic characterization of quantifiers. Fund. Math. 37 (1950), 63–74. MR 0040234 | Zbl 0041.34804
[7] Horn, A.: The separation theorem of intuitionistic propositional calculus. Journ. Symb. Logic 27 (1962), 391–399. DOI 10.2307/2964545 | MR 0171706
[8] Huang, W., Liu, F.: On the adjoint semigroups of $p$-separable BCI-algebras. Semigroup Forum 58 (1999), 317–322. DOI 10.1007/BF03325431 | MR 1678492 | Zbl 0928.06012
[9] Huang, W., Wang, D.: Adjoint semigroups of BCI-algebras. Southeast Asian Bull. Math. 19 (1995), 95–98. MR 1366413 | Zbl 0859.06016
[10] Iseki, K., Tanaka, S.: An introduction in the theory of BCK-algebras. Math. Japon. 23 (1978), 1–26. MR 0500283
[11] Karp, C. R.: Set representation theorems in implicative models. Amer. Math. Monthly 61 (1954), 523–523 (abstract).
[12] Karp, C. R.: Languages with expressions of infinite length. Univ. South. California, 1964 (Ph.D. thesis). MR 0176910 | Zbl 0127.00901
[13] Kondo, M.: Relationship between ideals of BCI-algebras and order ideals of its adjoint semigroup. Int. J. Math. 28 (2001), 535–543. DOI 10.1155/S0161171201010985 | MR 1895299 | Zbl 1007.06014
[14] Marsden, E. L.: Compatible elements in implicational models. J. Philos. Log. 1 (1972), 195–200. DOI 10.1007/BF00650494 | MR 0476504
[15] Schmidt, J.: Quasi-decompositions, exact sequences, and triple sums of semigroups I. General theory. II Applications. In:Contrib. Universal Algebra Colloq. Math. Soc. Janos Bolyai (Szeged) 17 North-Holland, Amsterdam, 1977, 365–428. MR 0472657
[16] Tsinakis, C.: Brouwerian semilattices determined by their endomorphism semigroups. Houston J. Math. 5 (1979), 427–436. MR 0559982 | Zbl 0431.06003
[17] Tsirulis, Ya. P.: Notes on closure endomorphisms of implicative semilattices. Latvijskij Mat. Ezhegodnik 30 (1986), 136–149 (in Russian). MR 0878277
Partner of
EuDML logo