Previous |  Up |  Next

Article

Keywords:
convex dominating set; convex domination number; clique dominating set; composition; Cartesian product
Summary:
In this paper we characterize the convex dominating sets in the composition and Cartesian product of two connected graphs. The concepts of clique dominating set and clique domination number of a graph are defined. It is shown that the convex domination number of a composition $G[H]$ of two non-complete connected graphs $G$ and $H$ is equal to the clique domination number of $G$. The convex domination number of the Cartesian product of two connected graphs is related to the convex domination numbers of the graphs involved.
References:
[1] Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley, Redwood City (1990). Zbl 0688.05017
[2] S. R. Canoy, Jr., I. J. L. Garces: Convex sets under some graph operations. Graphs Comb. 18 (2002), 787-793. DOI 10.1007/s003730200065 | MR 1964797 | Zbl 1009.05054
[3] Chartrand, G., Zhang, P.: Convex sets in graphs. Congr. Numerantium 136 (1999), 19-32. MR 1744171 | Zbl 0967.05031
[4] Haynes, T. W., Hedetniemi, S. T., Slater, P. J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998). MR 1605684 | Zbl 0890.05002
[5] Haynes, T. W., Hedetniemi, S. T., Slater, P. J.: Domination in Graphs. Advanced Topics. Marcel Dekker, New York (1998). MR 1605685 | Zbl 0883.00011
[6] Lemańska, M.: Weakly convex and convex domination numbers. Opusc. Math. 24 (2004), 181-188. MR 2100881 | Zbl 1076.05060
Partner of
EuDML logo