Previous |  Up |  Next

Article

Keywords:
Orlicz space; Orlicz-Sobolev space; embedding theorem; sharp constant; Moser-Trudinger inequality; concentration-compactness principle
Summary:
We give a version of the Moser-Trudinger inequality without boundary condition for Orlicz-Sobolev spaces embedded into exponential and multiple exponential spaces. We also derive the Concentration-Compactness Alternative for this inequality. As an application of our Concentration-Compactness Alternative we prove that a functional with the sub-critical growth attains its maximum.
References:
[1] Černý, R.: Concentration-compactness principle for embedding into multiple exponential spaces. Math. Inequal. Appl. 15 (2012), 165-198. MR 2919441 | Zbl 1236.46027
[2] Černý, R.: Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities. Cent. Eur. J. Math. 10 (2012), 590-602. DOI 10.2478/s11533-011-0102-3 | MR 2893423
[3] Černý, R., Cianchi, A., Hencl, S.: Concentration-compactness principle for Moser-Trudinger inequalities: new results and proofs. (to appear) in Ann. Mat. Pura Appl.
[4] Černý, R., Gurka, P., Hencl, S.: Concentration-compactness principle for generalized Trudinger inequalities. Z. Anal. Anwend. 30 (2011), 355-375. DOI 10.4171/ZAA/1439 | MR 2819500 | Zbl 1225.46026
[5] Černý, R., Mašková, S.: A sharp form of an embedding into multiple exponential spaces. Czech. Math. J. 60 (2010), 751-782. DOI 10.1007/s10587-010-0048-9 | MR 2672414 | Zbl 1224.46064
[6] Cherrier, P.: Meilleures constants dans des inégalités rélatives aux espaces de Sobolev. Bull. Sci. Math., II. Ser. 108 (1984), 225-262. MR 0771911
[7] Cianchi, A.: A sharp embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J. 45 (1996), 39-65. DOI 10.1512/iumj.1996.45.1958 | MR 1406683 | Zbl 0860.46022
[8] Cianchi, A.: Moser-Trudinger inequalities without boundary conditions and isoperimetric problems. Indiana Univ. Math. J. 54 (2005), 669-705. DOI 10.1512/iumj.2005.54.2589 | MR 2151230 | Zbl 1097.46016
[9] Cianchi, A., Pick, L.: Sobolev embedings into $BMO$, $VMO$, and $L^{\infty}$. Ark. Mat. 36 (1998), 317-340. DOI 10.1007/BF02384772 | MR 1650446
[10] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces. Indiana Univ. Math. J. 44 (1995), 19-43. DOI 10.1512/iumj.1995.44.1977 | MR 1336431 | Zbl 0826.47021
[11] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability, Bessel potentials and embedding theorems. Stud. Math. 115 (1995), 151-181. MR 1347439 | Zbl 0829.47024
[12] Edmunds, D. E., Gurka, P., Opic, B.: Sharpness of embeddings in logarithmic Bessel-potential spaces. Proc. R. Soc. Edinb., Section A 126 (1996), 995-1009. DOI 10.1017/S0308210500023210 | MR 1415818 | Zbl 0860.46024
[13] Edmunds, D. E., Gurka, P., Opic, B.: On embeddings of logarithmic Bessel potential spaces. J. Funct. Anal. 146 (1997), 116-150. DOI 10.1006/jfan.1996.3037 | MR 1446377 | Zbl 0934.46036
[14] Edmunds, D. E., Gurka, P., Opic, B.: Norms of embeddings in logarithmic Bessel-potential spaces. Proc. Am. Math. Soc. 126 (1998), 2417-2425. DOI 10.1090/S0002-9939-98-04327-5 | MR 1451796
[15] Edmunds, D. E., Krbec, M.: Two limiting cases of Sobolev imbeddings. Houston J. Math. 21 (1995), 119-128. MR 1331250 | Zbl 0835.46027
[16] Fusco, N., Lions, P.-L., Sbordone, C.: Sobolev imbedding theorems in borderline cases. Proc. Am. Math. Soc. 124 (1996), 561-565. DOI 10.1090/S0002-9939-96-03136-X | MR 1301025 | Zbl 0841.46023
[17] Hencl, S.: A sharp form of an embedding into exponential and double exponential spaces. J. Funct. Anal. 204 (2003), 196-227. DOI 10.1016/S0022-1236(02)00172-6 | MR 2004749 | Zbl 1034.46031
[18] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam. 1 (1985), 145-201. DOI 10.4171/RMI/6 | MR 0834360 | Zbl 0704.49005
[19] Moser, J.: A sharp form of an inequality by Trudinger. Indiana Univ. Math. J. 20 (1971), 1077-1092. DOI 10.1512/iumj.1971.20.20101 | MR 0301504 | Zbl 0213.13001
[20] Opic, B., Pick, L.: On generalized Lorentz-Zygmund spaces. Math. Inequal. Appl. 2 (1999), 391-467. MR 1698383 | Zbl 0956.46020
[21] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces. Pure and Applied Mathematics. Marcel Dekker New York (1991). MR 1113700
[22] Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473-484. MR 0216286 | Zbl 0163.36402
Partner of
EuDML logo