Previous |  Up |  Next

Article

Keywords:
base-base paracompact space; coarse base; Sorgenfrey irrationals; totally imperfect set
Summary:
A topological space $X$ is called base-base paracompact (John E. Porter) if it has an open base $\mathcal B$ such that every base ${\mathcal B' \subseteq \mathcal B}$ has a locally finite subcover $\mathcal C \subseteq \mathcal B'$. It is not known if every paracompact space is base-base paracompact. We study subspaces of the Sorgenfrey line (e.g. the irrationals, a Bernstein set) as a possible counterexample.
References:
[1] Arhangelskii, A. V.: On the metrization of topological spaces. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 8 (1960), 589-595 Russian \MR 0125561. MR 0125561
[2] Balogh, Z., Bennett, H.: Total paracompactness of real GO-spaces. Proc. Amer. Math. Soc. 101 (1987), 753-760. DOI 10.1090/S0002-9939-1987-0911046-2 | MR 0911046 | Zbl 0627.54016
[3] Caux, P. de: Yet another property of the Sorgenfrey plane. Topology Proc. 6 (1981), 31-43. MR 0650479
[4] Corson, H. H., McMinn, T. J., Michael, E. A., Nagata, J.: Bases and local finiteness. Notices Amer. Math. Soc. 6 (1959), 814 (abstract).
[5] Corson, H. H.: Collections of convex sets which cover a Banach space. Fund. Math. 49 (1960/1961), 143-145. DOI 10.4064/fm-49-2-143-145 | MR 0125430
[6] Curtis, D. W.: Total and absolute paracompactness. Fund. Math. 77 (1973), 277-283. DOI 10.4064/fm-77-3-277-283 | MR 0321005 | Zbl 0248.54022
[7] Douwen, Eric K. van, Pfeffer, W.: Some properties of the Sorgenfrey line and related spaces. Pacific J. Math. 81 (1979), 371-377. DOI 10.2140/pjm.1979.81.371 | MR 0547605
[8] Ford, R.: Basic properties in dimension theory. Dissertation, Auburn University (1963). MR 2613829
[9] Gerlits, J., Nagy, Zs.: Some properties of $C(X)$, I. Topol. Appl. 14 (1982), 151-161. DOI 10.1016/0166-8641(82)90065-7 | MR 0667661 | Zbl 0503.54020
[10] Gruenhage, Gary: A survey of $D$-spaces. Contemporary Mathematics 533 (2011), 13-28. DOI 10.1090/conm/533/10502 | MR 2777743 | Zbl 1217.54025
[11] Lelek, A.: On totally paracompact metric spaces. Proc. Amer. Math. Soc. 19 (1968), 168-170. DOI 10.1090/S0002-9939-1968-0219032-3 | MR 0219032 | Zbl 0153.52602
[12] Lelek, A.: Some cover properties of spaces. Fund. Math. 64 (1969), 209-218. DOI 10.4064/fm-64-2-209-218 | MR 0242108 | Zbl 0175.49603
[13] O'Farrell, J. M.: Some methods of determining total paracompactness. Diss., Auburn Univ. (1982).
[14] O'Farrell, J. M.: The Sorgenfrey line is not totally metacompact. Houston J. Math. 9 (1983), 271-273. MR 0703275 | Zbl 0518.54020
[15] O'Farrell, J. M.: Construction of a Hurewicz metric space whose square is not a Hurewicz space. Fund. Math. 127 (1987), 41-43. DOI 10.4064/fm-127-1-41-43 | MR 0883150
[16] Popvassilev, S. G.: Base-cover paracompactness. Proc. Amer. Math. Soc. 132 (2004), 3121-3130. DOI 10.1090/S0002-9939-04-07457-X | MR 2063135 | Zbl 1062.54022
[17] Popvassilev, S. G.: Base-family paracompactness. Houston J. Math. 32 (2006), 459-469. MR 2219324 | Zbl 1148.54008
[18] Popvassilev, S. G.: On base-cover metacompact products. Topol. Appl. 157 (2010), 2553-2554. DOI 10.1016/j.topol.2010.07.035 | MR 2719398 | Zbl 1200.54011
[19] Popvassilev, S. G.: Base-base, base-cover and base-family paracompactness. Contributed Problems, Zoltán Balogh Memorial Topology Conference, Miami Univ., Oxford, Ohio, Nov. 15-16 (2002), 18-19. http://notch.mathstat.muohio.edu/balog\_conference/all\_prob.pdf
[20] Popvassilev, S. G.: Problems by S. Popvassilev. Problems in General and Set-Theoretic Topology, 2004 Spring Topology and Dynamics Conference at the University of Alabama, Birmingham. http://www.auburn.edu/ {gruengf/confprobs.pdf}.
[21] Porter, J. E.: Generalizations of totally paracompact spaces. Diss., Auburn Univ. (2000).
[22] Porter, J. E.: Base-paracompact spaces. Topol. Appl. 128 (2003), 145-156. DOI 10.1016/S0166-8641(02)00109-8 | MR 1956610 | Zbl 1099.54021
[23] Porter, J. E.: Strongly base-paracompact spaces. Comment. Math. Univ. Carolin. 44 (2003), 307-314. MR 2026165 | Zbl 1099.54021
[24] Rudin, M. E.: Martin's axiom. Jon Barwise Handbook of mathematical logic, Studies in Logic and the Found. of Math. 90 North-Holland (1977), 491-501. MR 0457132
[25] Sakai, M.: Menger subsets of the Sorgenfrey line. Proc. Amer. Math. Soc. 137 (2009), 3129-3138. DOI 10.1090/S0002-9939-09-09887-6 | MR 2506472 | Zbl 1182.03077
[26] Telgárski, R., Kok, H.: The space of rationals is not absolutely paracompact. Fund. Math. 73 (1971/72), 75-78. DOI 10.4064/fm-73-1-75-78 | MR 0293585
Partner of
EuDML logo