Previous |  Up |  Next

Article

Keywords:
$\mu $-essential submodule; $\mu $-singular module; $\mu $-extending module; weakly $\mu $-extending module
Summary:
Let $M$ be a module and $\mu $ be a class of modules in $\operatorname{Mod}-R$ which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a $\mu $-essential submodule provided it has a non-zero intersection with any non-zero submodule in $\mu $. We define and investigate $\mu $-singular modules. We also introduce $\mu $-extending and weakly $\mu $-extending modules and mainly study weakly $\mu $-extending modules. We give some characterizations of $\mu $-co-H-rings by weakly $\mu $-extending modules. Let $R$ be a right non-$\mu $-singular ring such that all injective modules are non-$\mu $-singular, then $R$ is right $\mu $-co-H-ring if and only if $R$ is a QF-ring.
References:
[1] Chatters, A. W., Khuri, S. M.: Endomorphism rings of modules over nonsingular CS rings. J. London Math. Soc. 21 (2) (1980), 434–444. DOI 10.1112/jlms/s2-21.3.434 | MR 0577719
[2] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R.: Extending Modules. Pitman, London, 1994.
[3] Faith, C.: Algebra II: Ring Theory. Springer–Verlag Berlin–Heidelberg–New York, 1976. MR 0427349
[4] Goodearl, K. R.: Ring Theory. Marcel Dekker, New York – Basel, 1976. MR 0429962
[5] Mohamed, S. H., Müller, B. J.: Continuous and Discrete Modules. London Math. Soc. 147 (1990). MR 1084376
[6] Oshiro, K.: Lifting modules, extending modules and their applications to QF-rings. Hokkaido Math. J. 13 (1984), 310–338. MR 0764267
[7] Özcan, A. Ç.: On GCO–modules and M–small modules. Comm. Fac. Sci. Univ. Ankara Ser. A1 51 (2) (2002), 25–36. MR 1981050 | Zbl 1038.16005
[8] Özcan, A. Ç.: On $\mu $–essential and $\mu $–$M$–singular modules. Proceedings of the Fifth China–Japan–Korea Conference, Tokyo, Japan, 2007, pp. 272–283. MR 2513224
[9] Özcan, A. Ç.: The torsion theory cogenerated by $\delta $–M–small modules and GCO–modules. Comm. Algebra 35 (2007), 623–633. DOI 10.1080/00927870601074871 | MR 2294622 | Zbl 1117.16020
[10] Talebi, Y., Vanaja, N.: The torsion theory cogenerated by M–small modules. Comm. Algebra 30 (3) (2002), 1449–1460. DOI 10.1080/00927870209342390 | MR 1892609 | Zbl 1005.16029
Partner of
EuDML logo