Previous |  Up |  Next

Article

Keywords:
free commutative automorphic loop; automorphic loop; associator calculus
Summary:
A loop is automorphic if all its inner mappings are automorphisms. We construct the free commutative automorphic $2$-generated loop of nilpotency class $3$. It has dimension $8$ over the integers.
References:
[1] Barros D.: Commutative automorphic loops. PhD dissertation, University of Sao Paulo, in preparation.
[2] Barros D., Grishkov A., Vojtěchovský P.: Commutative automorphic loops of order $p^3$. J. Algebra Appl.(to appear).
[3] Bruck R.H.: A Survey of Binary Systems. Springer, 1971. MR 0093552 | Zbl 0141.01401
[4] Bruck R.H., Paige L.J.: Loops whose inner mappings are automorphisms. Ann. of Math. (2) 63 (1956), 308–323. DOI 10.2307/1969612 | MR 0076779 | Zbl 0074.01701
[5] Csörgö P.: The multiplication group of a finite commutative automorphic loop of order of power of an odd prime $p$ is a $p$-group. J. Algebra 350 (2012), no. 1, 77–83. DOI 10.1016/j.jalgebra.2011.09.038 | MR 2859876
[6] Jedlička P., Kinyon M., Vojtěchovský P.: The structure of commutative automorphic loops. Trans. Amer. Math. Soc. 363 (2011), no. 1, 365–384. DOI 10.1090/S0002-9947-2010-05088-3 | MR 2719686 | Zbl 1215.20060
[7] Jedlička P., Kinyon M., Vojtěchovský P.: Constructions of commutative automorphic loops. Comm. Algebra 38 (2010), no. 9, 3243–3267. DOI 10.1080/00927870903200877 | MR 2724218 | Zbl 1209.20069
[8] Jedlička P., Kinyon M., Vojtěchovský P.: Nilpotency in automorphic loops of prime power order. J. Algebra 350 (2012), no. 1, 64–76. DOI 10.1016/j.jalgebra.2011.09.034 | MR 2859875
[9] Johnson K.W., Kinyon M.K., Nagy G.P., Vojtěchovský P.: Searching for small simple automorphic loops. LMS J. Comput. Math. 14 (2011), 200–213. DOI 10.1112/S1461157010000173 | MR 2831230 | Zbl 1225.20052
[10] Grishkov A.N., Shestakov I.P.: Commutative Moufang loops and alternative algebras. J. Algebra 333 (2011), 1–13. DOI 10.1016/j.jalgebra.2010.11.020 | MR 2785933 | Zbl 1243.20076
[11] Kinyon M.K., Kunen K., Phillips J.D., Vojtěchovský P.: The structure of automorphic loops. in preparation.
[12] Wolfram Research, Inc.: Mathematica. version 8.0, Wolfram Research, Inc., Champaign, Illinois, 2010.
Partner of
EuDML logo