[1] Alexandroff P., Urysohn P.: Mémorie sur les éspaces topologiques compacts. Verh. Akad. Wetensch. Amsterdam 14 (1929), 1–96.
[2] Arens R., Dugundji J.:
Remark on the concept of compactness. Portugaliae Math. 9 (1950), 141–143.
MR 0038642 |
Zbl 0039.18602
[3] Artico G., Marconi U., Pelant J., Rotter L., Tkachenko M.:
Selections and suborderability. Fund. Math. 175 (2002), 1–33.
MR 1971236 |
Zbl 1019.54014
[4] Caicedo X.:
The abstract compactness theorem revisited. in Logic and Foundations of Mathematics (A. Cantini et al. editors), Kluwer Academic Publishers, Dordrecht, 1999, pp. 131–141.
MR 1739865 |
Zbl 0955.03044
[5] Choquet C.:
Sur les notions de filtre et de grille. C.R. Acad. Sci., Paris 224 (1947), 171–173.
MR 0018813 |
Zbl 0029.07602
[6] Dow A., Porter J.R., Stephenson R.M., Woods R.G.:
Spaces whose pseudocompact subspaces are closed subsets. Appl. Gen. Topol. 5 (2004), 243–264.
MR 2121792 |
Zbl 1066.54024
[7] Engelking R.:
General Topology. 2nd edition, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989.
MR 1039321 |
Zbl 0684.54001
[9] García-Ferreira S.:
On FU($p$)-spaces and $p$-sequential spaces. Comment. Math. Univ. Carolin. 32 (1991), 161–171.
MR 1118299 |
Zbl 0789.54032
[10] García-Ferreira S.:
Some generalizations of pseudocompactness. Papers on General Topology and Applications (Flushing, NY, 1992), Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994, pp. 22–31.
MR 1467759 |
Zbl 0911.54022
[11] Garcia-Ferreira S.:
On two generalizations of pseudocompactness. Proceedings of the 14th Summer Conference on General Topology and its Applications (Brookville, NY, August 4–8, 1999), Topology Proc. 24 (2001), 149–172.
MR 1876373 |
Zbl 1026.54017
[13] Glicksberg I.:
Stone-Čech compactifications of products. Trans. Amer. Math. Soc 90 (1959), 369–382.
MR 0105667 |
Zbl 0089.38702
[14] Good C.:
The Lindelöf property. in Encyclopedia of General Topology, edited by K.P. Hart, J. Nagata and J.E. Vaughan, Elsevier Science Publishers, Amsterdam, 2004, Chapter d-8, 182–184.
MR 2049453
[15] Larson P.B.:
Irreducibility of product spaces with finitely many points removed. Spring Topology and Dynamical Systems Conference, Topology Proc. 30 (2006), 327–333.
MR 2280675 |
Zbl 1128.54004
[17] Lipparini P.:
Some compactness properties related to pseudocompactness and ultrafilter convergence. Topology Proc. 40 (2012), 29–51.
MR 2793281
[19] Lipparini P.: Ordinal compactness. submitted, preprint available at arXiv:1012.4737v2 (2011).
[20] Lipparini P.: Products of sequentially pseudocompact spaces. arXiv:1201.4832.
[22] Smirnov Y.M.:
On topological spaces compact in a given interval of powers (Russian). Izvestiya Akad. Nauk SSSR, Ser. Mat. 14 (1950), 155–178.
MR 0035004
[23] Stephenson R.M., Jr.:
Initially $\kappa $-compact and related spaces. in Handbook of Set-theoretic Topology, edited by K. Kunen and J.E. Vaughan, North-Holland, Amsterdam, 1984, Chapter 13, pp. 603–632.
MR 0776632 |
Zbl 0588.54025
[24] Stephenson R.M., Jr.:
Pseudocompact spaces. in Encyclopedia of General Topology, edited by K.P. Hart, J. Nagata and J.E. Vaughan, Elsevier Science Publishers, B.V., Amsterdam, 2004, Chapter d-07, pp. 177–181.
Zbl 0804.54004
[25] Vaughan J.E.:
Some recent results in the theory of $[a,b]$-compactness. in TOPO 72–General Topology and its Applications (Proc. Second Pittsburgh Internat. Conf., Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), Lecture Notes in Math., 378, Springer, Berlin, 1974, pp. 534–550.
DOI 10.1007/BFb0068506 |
MR 0367928 |
Zbl 0297.54021
[26] Vaughan J.E.:
Some properties related to $[a,b]$-compactness. Fund. Math. 87 (1975), 251–260.
MR 0380732
[27] Vaughan J.E.:
Countably compact and sequentially compact spaces. in Handbook of Set-theoretic Topology, edited by K. Kunen and J.E. Vaughan, North-Holland, Amsterdam, 1984, Chapter 12, pp. 569–602.
MR 0776631 |
Zbl 0562.54031
[28] Vaughan J.E.:
Countable compactness. in Encyclopedia of General Topology, edited by K.P. Hart, J. Nagata and J.E. Vaughan, Elsevier Science Publishers, Amsterdam, 2004, Chapter d-6, 174–176.
MR 2049453 |
Zbl 0984.54027