Previous |  Up |  Next

Article

Keywords:
non singular Morse-Smale flows; round handle decomposition; link
Summary:
We build the flows of non singular Morse-Smale systems on the 3-sphere from its round handle decomposition. We show the existence of flows corresponding to the same link of periodic orbits that are non equivalent. So, the link of periodic orbits is not in a 1-1 correspondence with this type of flows and we search for other topological invariants such as the associated dual graph.
References:
[1] Asimov, D.: Round handles and non-singular Morse-Smale flows. Ann. Math. 102 (1975), 41-54. DOI 10.2307/1970972 | MR 0380883 | Zbl 0316.57020
[2] Campos, B., Martínez Alfaro, J., Vindel, P.: Bifurcations of links of periodic orbits in non-singular Morse-Smale systems on $S^{3}$. Nonlinearity 10 (1997), 1339-1355. DOI 10.1088/0951-7715/10/5/018 | MR 1473388
[3] Campos, B., Martínez Alfaro, J., Vindel, P.: Graphs of NMS flows on $S^{3}$ with unknotted saddle periodic orbits. Topol. Proc. 26 (2001-2002), 469-483. MR 2032833
[4] Campos, B., Vindel, P.: Graphs of NMS flows on $ S^{3} $ with knotted saddle orbits and no heteroclinic trajectories. Acta Math. Sin., Engl. Ser. 23 (2007), 2213-2224. DOI 10.1007/s10114-007-0969-x | MR 2357455 | Zbl 1137.37312
[5] Morgan, J. W.: Non-singular Morse-Smale flows on 3-dimensional manifolds. Topology 18 (1978), 41-53. DOI 10.1016/0040-9383(79)90013-2 | MR 0528235
[6] Nikolaev, I., Zhuzhoma, E.: Flows on 2-dimensional Manifolds. Lectures Notes in Mathematics 1705. Springer, Berlin (1999). DOI 10.1007/BFb0093599 | MR 1707298 | Zbl 1022.37027
[7] Wada, M.: Closed orbits of non-singular Morse-Smale flows on $S^3$. J. Math. Soc. Japan 41 (1989), 405-413. DOI 10.2969/jmsj/04130405 | MR 0999505
[8] Yano, K.: The homotopy class of non-singular Morse-Smale vector fields on 3-manifolds. Invent. Math. 80 (1985), 435-451. DOI 10.1007/BF01388724 | MR 0791668 | Zbl 0622.58018
Partner of
EuDML logo