[1] Abbasbandy, S.:
A numerical solution of Blasius equation by Adomian's decomposition method and comparison with homotopy perturbation method. Chaos Solitons Fractals 31 (2007), 257-260.
DOI 10.1016/j.chaos.2005.10.071 |
MR 2262129
[2] Acrivos, A., Shah, A., Petersen, E. E.:
Momentum and heat transfer in laminar boundary-layer flows of non-Newtonian fluids past external surfaces. AIChE J. 6 (1960), 312-317.
DOI 10.1002/aic.690060227
[3] Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 56 (1908), 1-37.
[4] Briot, Ch., Bouquet, J. K.: Étude des fonctions d'une variable imaginaire. Journal de l'École Polytechnique, Cashier 36 (1856), 85-131.
[5] Guedda, M.:
Similarity and pseudosimilarity soutions of degenerate boundary-layer equations. M. Chipot Handbook of Differential Equations, Stationary Partial Differential Equation vol. 4, North Holland (2007), 117-202.
DOI 10.1016/S1874-5733(07)80006-4 |
MR 2569332
[7] Henrici, P.:
Applied and Computational Complex Analysis. Vol. 1. Power Series---Integration---Conformal Mappings---Location of Zeros. Wiley, New York (1974).
MR 0372162 |
Zbl 0313.30001
[8] Hille, E.:
Ordinary Differential Equations in the Complex Domain. John Wiley, New York (1976).
MR 0499382 |
Zbl 0343.34007
[9] Howarth, L.:
On the solution of the laminar boundary layer equations. Proc. R. Soc. Lond. A 164 (1938), 547-579.
DOI 10.1098/rspa.1938.0037
[10] Liao, S.-J.:
An explicit, totally analytic, solution for Blasius viscous flow problems. Int. J. Non-Lin. Mech. 34 (1999), 758-778.
MR 1688603
[11] Ince, E. L.:
Ordinary Differential Equations. Dover Publ., New York (1956).
MR 0010757
[13] Schlichting, H., Gersten, K.:
Boundary Layer Theory (8th revised and enlarged edition). Springer, Berlin (2000).
MR 1765242
[14] Schowalter, W. R.:
The application of boundary-layer theory to power-law pseudoplastic fluids: Similar solutions. AIChE J. 6 (1960), 24-28.
DOI 10.1002/aic.690060105
[15] Töpfer, K.: Bemerkung zu dem Aufsatz von H. Blasius: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 60 (1912), 397-398.