[1] Burton, D. M.:
Elementary Number Theory. McGraw-Hill (2007).
MR 0567137
[4] Chartrand, G., Oellermann, O. R.:
Applied and Algorithmic Graph Theory. International Series in Pure and Applied Mathematics McGraw-Hill (1993) \MR 1211413.
MR 1211413
[5] Deo, N.:
Graph theory with Application to Engineering and Computer Sciences. Prentice-Hall Series in Automatic Computation. Englewood Cliffs, N.J.: Prentice-Hall (1974).
MR 0360322
[6] Ellson, J., Gansner, E., Koutsofios, L., North, S. C., Woodhull, G.:
Graphviz--open source graph drawing tools. Mutzel, Petra (ed.) et al., Graph drawing. 9th international symposium, GD 2001, Vienna, Austria, September 23-26, 2001 Revised papers. Berlin: Springer. Lect. Notes Comput. Sci. 2265 (2002), 483-484.
MR 1962414 |
Zbl 1054.68583
[7] Husnine, S. M., Ahmad, U., Somer, L.:
On symmetries of power digraphs. Util. Math. 85 (2011), 257-271.
MR 2840802
[8] Kramer-Miller, J.: Structural properties of power digraphs modulo $n$. Proceedings of the 2009 Midstates Conference on Undergraduate Research in Computer Science and Mathematics, Oberlin, Ohio (2009), 40-49.
[9] Lucheta, C., Miller, E., Reiter, C.:
Digraphs from powers modulo $p$. Fibonacci Q. 34 (1996), 226-239.
MR 1390409 |
Zbl 0855.05067
[12] Somer, L., Křížek, M.:
On semiregular digraphs of the congruence $x^{k}\equiv y \pmod n$. Commentat. Math. Univ. Carol. 48 (2007), 41-58.
MR 2338828
[15] MATLAB, The language of technical computing (version 7.0.0.19920 (R14)).