[1] Beidar, K. I.:
Rings with generalized identities. III. Mosc. Univ. Math. Bull. 33 (1978), 53-58.
MR 0510966 |
Zbl 0407.16002
[2] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.:
Rings with Generalized Identities. Pure and Applied Mathematics, Marcel Dekker. 196. New York (1996).
MR 1368853
[5] Filippis, V. De:
On the annihilator of commutators with derivation in prime rings. Rend. Circ. Mat. Palermo, II. Ser. 49 (2000), 343-352.
MR 1765404 |
Zbl 0962.16017
[6] Filippis, V. De:
A result on vanishing derivations for commutators on right ideals. Math. Pannonica 16 (2005), 3-18.
MR 2134234 |
Zbl 1081.16036
[8] Vincenzo, O. M. Di:
On the n-th centralizer of a Lie ideal. Boll. Unione Mat. Ital., VII. Ser., A 3 (1989), 77-85.
MR 0990089 |
Zbl 0692.16022
[11] Herstein, I. N.:
Topics in Ring Theory. Chicago Lectures in Mathematics. Chicago-London: The University of Chicago Press. XI (1969).
MR 0271135 |
Zbl 0232.16001
[12] Jacobson, N.:
PI-Algebras. An Introduction. Lecture Notes in Mathematics. 441. Springer-Verlag, New York (1975).
MR 0369421 |
Zbl 0326.16013
[13] Jacobson, N.:
Structure of Rings. Amererican Mathematical Society. Providence R.I. (1956).
MR 0081264 |
Zbl 0073.02002
[20] Lee, T.-K.:
Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38.
MR 1166215 |
Zbl 0769.16017
[28] Thomas, M. P.:
The image of a derivation is contained in the radical. Ann. Math. (2) 128/3 (1988), 435-460.
MR 0970607 |
Zbl 0681.47016
[29] Wong, T. L.:
Derivations with power-central values on multilinear polynomials. Algebra Colloq. 3 (1996), 369-378.
MR 1422975 |
Zbl 0864.16031