Previous |  Up |  Next

Article

Keywords:
prime rings; differential identities; generalized derivations; Banach algebra
Summary:
Let $R$ be a prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$, $F$ a non-zero generalized derivation of $R$. Suppose that $[F(u),u]F(u)=0$ for all $u\in L$, then one of the following holds: (1) there exists $\alpha \in C$ such that $F(x)=\alpha x$ for all $x\in R$; (2) $R$ satisfies the standard identity $s_4$ and there exist $a\in U$ and $\alpha \in C$ such that $F(x)=ax+xa+\alpha x$ for all $x\in R$. We also extend the result to the one-sided case. Finally, as an application we obtain some range inclusion results of continuous or spectrally bounded generalized derivations on Banach algebras.
References:
[1] Beidar, K. I.: Rings with generalized identities. III. Mosc. Univ. Math. Bull. 33 (1978), 53-58. MR 0510966 | Zbl 0407.16002
[2] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities. Pure and Applied Mathematics, Marcel Dekker. 196. New York (1996). MR 1368853
[3] Brešar, M., Mathieu, M.: Derivations mapping into the radical III. J. Funct. Anal. 133 (1995), 21-29. DOI 10.1006/jfan.1995.1116 | MR 1351640 | Zbl 0897.46045
[4] Chuang, C. L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103 (1988), 723-728. DOI 10.1090/S0002-9939-1988-0947646-4 | MR 0947646 | Zbl 0656.16006
[5] Filippis, V. De: On the annihilator of commutators with derivation in prime rings. Rend. Circ. Mat. Palermo, II. Ser. 49 (2000), 343-352. MR 1765404 | Zbl 0962.16017
[6] Filippis, V. De: A result on vanishing derivations for commutators on right ideals. Math. Pannonica 16 (2005), 3-18. MR 2134234 | Zbl 1081.16036
[7] Filippis, V. De: A product of generalized derivations on polynomials in prime rings. Collect. Math. 61 (2010), 303-322. DOI 10.1007/BF03191235 | MR 2732374
[8] Vincenzo, O. M. Di: On the n-th centralizer of a Lie ideal. Boll. Unione Mat. Ital., VII. Ser., A 3 (1989), 77-85. MR 0990089 | Zbl 0692.16022
[9] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras. Pac. J. Math. 60 (1975), 49-63. DOI 10.2140/pjm.1975.60.49 | MR 0382379
[10] Faith, C., Utumi, Y.: On a new proof of Litoff's theorem. Acta Math. Acad. Sci. Hung. 14 (1963), 369-371. DOI 10.1007/BF01895723 | MR 0155858 | Zbl 0147.28602
[11] Herstein, I. N.: Topics in Ring Theory. Chicago Lectures in Mathematics. Chicago-London: The University of Chicago Press. XI (1969). MR 0271135 | Zbl 0232.16001
[12] Jacobson, N.: PI-Algebras. An Introduction. Lecture Notes in Mathematics. 441. Springer-Verlag, New York (1975). MR 0369421 | Zbl 0326.16013
[13] Jacobson, N.: Structure of Rings. Amererican Mathematical Society. Providence R.I. (1956). MR 0081264 | Zbl 0073.02002
[14] Johnson, B. E., Sinclair, A. M.: Continuity of derivations and a problem of Kaplansky. Am. J. Math. 90 (1968), 1067-1073. DOI 10.2307/2373290 | MR 0239419 | Zbl 0179.18103
[15] Kharchenko, V. K.: Differential identities of prime rings. Algebra Logic 17 (1979), 155-168. DOI 10.1007/BF01670115 | MR 0541758
[16] Kim, B.: On the derivations of semiprime rings and noncommutative Banach algebras. Acta Math. Sin., Engl. Ser. 16 (2000), 21-28. DOI 10.1007/s101149900020 | MR 1760520 | Zbl 0973.16020
[17] Kim, B.: Derivations of semiprime rings and noncommutative Banach algebras. Commun. Korean Math. Soc. 17 (2002), 607-618. DOI 10.4134/CKMS.2002.17.4.607 | MR 1971004 | Zbl 1101.46317
[18] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems. Pac. J. Math. 134 (1988), 275-297. DOI 10.2140/pjm.1988.134.275 | MR 0961236 | Zbl 0614.16028
[19] Lee, T.-K.: Generalized derivations of left faithful rings. Commun. Algebra 27 (1999), 4057-4073. DOI 10.1080/00927879908826682 | MR 1700189 | Zbl 0946.16026
[20] Lee, T.-K.: Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. MR 1166215 | Zbl 0769.16017
[21] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576-584. DOI 10.1016/0021-8693(69)90029-5 | MR 0238897
[22] Mathieu, M., Murphy, G. J.: Derivations mapping into the radical. Arch. Math. 57 (1991), 469-474. DOI 10.1007/BF01246745 | MR 1129522 | Zbl 0714.46038
[23] Mathieu, M., Runde, V.: Derivations mapping into the radical II. Bull. Lond. Math. Soc. 24 (1992), 485-487. DOI 10.1112/blms/24.5.485 | MR 1173946 | Zbl 0733.46023
[24] Park, K.-H.: On derivations in noncommutative semiprime rings and Banach algebras. Bull. Korean Math. Soc. 42 (2005), 671-678. DOI 10.4134/BKMS.2005.42.4.671 | MR 2181155 | Zbl 1105.16031
[25] Posner, E. C.: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1958), 1093-1100. DOI 10.1090/S0002-9939-1957-0095863-0 | MR 0095863 | Zbl 0082.03003
[26] Sinclair, A. M.: Continuous derivations on Banach algebras. Proc. Am. Math. Soc. 20 (1969), 166-170. DOI 10.1090/S0002-9939-1969-0233207-X | MR 0233207 | Zbl 0164.44603
[27] Singer, I. M., Wermer, J.: Derivations on commutative normed algebras. Math. Ann. 129 (1955), 260-264. DOI 10.1007/BF01362370 | MR 0070061 | Zbl 0067.35101
[28] Thomas, M. P.: The image of a derivation is contained in the radical. Ann. Math. (2) 128/3 (1988), 435-460. MR 0970607 | Zbl 0681.47016
[29] Wong, T. L.: Derivations with power-central values on multilinear polynomials. Algebra Colloq. 3 (1996), 369-378. MR 1422975 | Zbl 0864.16031
Partner of
EuDML logo