Previous |  Up |  Next

Article

Keywords:
harmonic sections; Liouville theorem; stochastic analysis on manifolds
Summary:
Let $P(M,G)$ be a principal fiber bundle and $E(M,N,G,P)$ an associated fiber bundle. Our interest is to study the harmonic sections of the projection $\pi_{E}$ of $E$ into $M$. Our first purpose is give a characterization of harmonic sections of $M$ into $E$ regarding its equivariant lift. The second purpose is to show a version of a Liouville theorem for harmonic sections of $\pi_{E}$.
References:
[1] Arvanitoyeorgos, A.: An introduction to Lie groups and the geometry of homogeneous spaces. Student Mathematical Library, vol. 22, AMS, Providence, RI, 2003. MR 2011126 | Zbl 1045.53001
[2] Benyounes, M., Loubeau, E., Wood, C. M.: Harmonic sections of Riemannian vector bundles, and metrics of Cheeger–Gromoll type. Differential Geom. Appl. 25 (3) (2007), 322–334. DOI 10.1016/j.difgeo.2006.11.010 | MR 2330461 | Zbl 1128.53037
[3] Catuogno, P.: A geometric Itô formula. Workshop on Differential Geometry. Mat. Contemp., vol. 33, 2007, pp. 85–99. MR 2429603 | Zbl 1156.58013
[4] Catuogno, P., Stelmastchuk, S.: Martingales on frame bundles. Potential Anal. 28 (2008), 61–69. DOI 10.1007/s11118-007-9068-y | MR 2366399 | Zbl 1131.53033
[5] Elworthy, K. D., Kendall, W. S.: Factorization of harmonic maps and Brownian motions. Pitman Res. Notes Math. Ser. 150 (1985), 72–83. MR 0894524
[6] Emery, M.: On two transfer principles in stochastic differential geometry. Séminaire de Probabilités XXIV, 407 – 441, Lectures Notes in Math., 1426, Springer, Berlin, 1989. MR 1071558
[7] Emery, M.: Stochastic Calculus in Manifolds. Springer, Berlin, 1989. MR 1030543 | Zbl 0697.60060
[8] Emery, M.: Martingales continues dans les variétés différentiables. Lectures on probability theory and statistics (Saint-Flour, 1998), 1–84, Lecture Notes in Math., 1738, Springer, Berlin, 2000. MR 1775639 | Zbl 0969.60042
[9] Hsu, E.: Stochastic analysis on manifolds. Grad. Stud. Math. 38 (2002). MR 1882015 | Zbl 0994.58019
[10] Ishihara, S., Yano, K.: Tangent and cotangent bundles: Differential geometry. Pure Appl. Math. 16 (1973). MR 0350650 | Zbl 0262.53024
[11] Ishihara, T.: Harmonic sections of tangent bundles. J. Math. Tokushima Univ. 13 (1979), 23–27. MR 0563393 | Zbl 0427.53019
[12] J., Vilms: Totally geodesic maps. J. Differential Geom. 4 (1970), 73–79. MR 0262984 | Zbl 0194.52901
[13] Kendall, W. S.: Nonnegative Ricci curvature and the Brownian coupling property. Stochastics 19 (1–2) (1986), 111–129. DOI 10.1080/17442508608833419 | MR 0864339 | Zbl 0584.58045
[14] Kendall, W. S.: From stochastic parallel transport to harmonic maps. New directions in Dirichlet forms, Amer. Math. Soc., Stud. Adv. Math. 8 ed., 1998, pp. 49–115. MR 1652279 | Zbl 0924.58110
[15] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. vol. I, Interscience Publishers, New York, 1963. MR 0152974 | Zbl 0119.37502
[16] Lindvall, T., Rogers, L. C. G.: Coupling of multidimensional diffusions by reflection. Ann. Probab. 14 (3) (1986), 860–872. DOI 10.1214/aop/1176992442 | MR 0841588 | Zbl 0593.60076
[17] Meyer, P. A.: Géométrie stochastique sans larmes. Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), Lecture Notes in Math., 850, Springer, Berlin–New York, 1981, pp. 44–102. MR 0622555 | Zbl 0459.60046
[18] Musso, E., Tricerri, F.: Riemannian metrics on tangent bundle. Ann. Mat. Pura Appl. (4) 150 (1988), 1–19. MR 0946027
[19] Poor, W. A.: Differential geometric structures. McGraw-Hill Book Co., New York, 1981. MR 0647949 | Zbl 0493.53027
[20] Protter, P.: Stochastic integration and differential equations. A new approach. Applications of Mathematics (New York), vol. 21, Springer-Verlag, Berlin, 1990. MR 1037262 | Zbl 0694.60047
[21] Shigekawa, I.: On stochastic horizontal lifts. Z. Wahrsch. Verw. Gebiete 59 (2) (1982), 211–221. DOI 10.1007/BF00531745 | MR 0650613 | Zbl 0487.60056
[22] Wood, C. M.: Gauss section in Riemannian immersion. J. London Math. Soc. (2) 33 (1) (1986), 157–168. DOI 10.1112/jlms/s2-33.1.157 | MR 0829396
[23] Wood, C. M.: Harmonic sections and Yang – Mills fields. Proc. London Math. Soc. (3) 54 (3) (1987), 544–558. MR 0879397 | Zbl 0616.53028
[24] Wood, C. M.: Harmonic sections and equivariant harmonic maps. Manuscripta Math. 94 (1) (1997), 1–13. DOI 10.1007/BF02677834 | MR 1468930 | Zbl 0914.58011
[25] Wood, C. M.: Harmonic sections of homogeneous fibre bundles. Differential Geom. Appl. 19 (2) (2003), 193–210. DOI 10.1016/S0926-2245(03)00021-4 | MR 2002659 | Zbl 1058.53053
Partner of
EuDML logo