[2] K. Cechlárová:
Efficient computation of the greatest eigenvector in fuzzy algebra. Tatra Mt. Math. Publ. 12 (1997), 73-79.
MR 1607194 |
Zbl 0963.65041
[3] G. Cohen, D. Dubois, J. P. Quadrat, M. Viot:
A linerar-system-theoretic view of discrete event processes and its use for performance evaluation in manufacturing. IEE Trans. Automat. Control AC-30 (1985), 210-220.
DOI 10.1109/TAC.1985.1103925 |
MR 0778424
[4] R. A. Cuninghame-Green:
Describing industrial processes with interference and approximating their steady-state behavior. Oper. Res. Quart. 13 (1962), 95-100.
DOI 10.1057/jors.1962.10
[5] R. A. Cuninghame-Green:
Minimax Algebra. Lect. Notes in Econom. and Math. Systems 166, Springer-Verlag, Berlin 1979.
MR 0580321 |
Zbl 0739.90073
[6] R. A. Cuninghame-Green: Minimax Algebra and Application. In: Advances in Imaging and Electron Physics 90, (P. W. Hawkes, ed.), Academic Press, New York 1995.
[8] M. Gavalec, I. Rashid: Monotone eigenspace structure of a max-drast fuzzy matrix. In: Proc. 28th Internat. Conf. Mathematical Methods in Economics, University of South Bohemia, České Budějovice 2010, pp. 162-167.
[9] M. Gavalec, I. Rashid, S. Sergeev: Monotone eigenspace structure of a max-prod fuzzy matrix. In preparation.
[10] M. Gondran:
Valeurs propres et vecteurs propres en classification hiérarchique. RAIRO Informatique Théorique 10 (1976), 39-46.
MR 0411059
[11] M. Gondran, M. Minoux:
Eigenvalues and eigenvectors in semimodules and their interpretation in graph theory. In: Proc. 9th Prog. Symp. 1976, pp. 133-148.
Zbl 0453.05028
[12] M. Gondran, M. Minoux: Valeurs propres et vecteurs propres en théorie des graphes. Colloq. Internat. CNRS (1978), 181-183.
[13] G. Olsder:
Eigenvalues of dynamic max-min systems. In: Discrete Events Dynamic Systems 1, Kluwer Academic Publishers 1991, pp. 177-201.
Zbl 0747.93014
[17] U. Zimmermann:
Linear and Combinatorial Optimization in Ordered Algebraic Structure. Ann. Discrete Math. 10, North Holland, Amsterdam 1981.
MR 0609751