[1] C. D. Aliprantis, K. C. Border:
Infinite Dimensional Analysis. Third Edition. Springer-Verlag, Berlin 2006.
MR 2378491 |
Zbl 1156.46001
[5] C. Berge:
Topological Spaces. Oliver and Boyd, Edinburgh and London 1963 (reprinted by Dover Publications, Inc., Mineola, New York 1997).
MR 1464690 |
Zbl 0114.38602
[6] D. Cruz-Suárez, R. Montes-de-Oca, F. Salem-Silva:
Conditions for the uniqueness of optimal policies of discounted Markov decision processes. Math. Methods Oper. Res. 60 (2004), 415-436.
DOI 10.1007/s001860400372 |
MR 2106092 |
Zbl 1104.90053
[9] P. K. Dutta, T. Mitra:
Maximum theorems for convex structures with an application to the theory of optimal intertemporal allocations. J. Math. Econom. 18 (1989), 77-86.
DOI 10.1016/0304-4068(89)90006-2 |
MR 0985949
[10] O. Hernández-Lerma, J. B. Lasserre:
Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996.
MR 1363487 |
Zbl 0840.93001
[11] O. Hernández-Lerma, W. J. Runggaldier:
Monotone approximations for convex stochastic control problems. J. Math. Systems Estim. Control 4 (1994), 99-140.
MR 1298550 |
Zbl 0812.93078
[12] K. Hinderer:
Lipschitz continuity of value functions in Markovian decision Processes. Math. Methods Oper. Res. 60 (2005), 3-22.
MR 2226965 |
Zbl 1093.90075
[13] K. Hinderer, M. Stieglitz:
Increasing and Lipschitz continuous minimizers in one-dimensional linear-convex systems without constraints: the continuous and the discrete case. Math. Methods Oper. Res. 44 (1996), 189-204.
DOI 10.1007/BF01194330 |
MR 1409065 |
Zbl 0860.90126
[18] R. B. King:
Beyond Quartic Equation. Birkhauser, Boston 1996.
MR 1401346
[19] M. Kitayev:
Semi-Markov and jump Markov control models: average cost criterion. Theory Probab. Appl. 30 (1985), 272-288.
MR 0792619
[20] D. V. Lindley:
The theory of queues with a single server. Proc. Cambridge Philos. Soc. 48 (1952), 277-289.
MR 0046597 |
Zbl 0046.35501
[21] M. Majumdar, R. Radner:
Stationary optimal policies with discounting in a stochastic activity analysis model. Econometrica 51 (1983), 1821-1837.
DOI 10.2307/1912118 |
MR 0720089
[22] S. P. Meyn:
Ergodic Theorems for discrete time stochastic systems using a stochastic Lyapunov functions. SIAM J. Control Optim. 27 (1989), 1409-1439.
DOI 10.1137/0327073 |
MR 1022436
[23] E. A. Ok:
Real Analysis with Economic Applications. Princeton University Press, Princeton 2007.
MR 2275400 |
Zbl 1119.26001
[24] A. L. Peressini, F. E. Sullivan, J. J. Uhl:
The Mathematics of Nonlinear Programming. Springer-Verlag, New York 1988.
MR 0932726 |
Zbl 0663.90054
[25] M. L. Puterman:
Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley, New York 1994.
MR 1270015 |
Zbl 1184.90170
[28] R. H. Stockbridge:
Time-average control of martingale problems: a linear programming formulation. Ann. Probab. 18 (1990), 291-314.
MR 1043944 |
Zbl 0699.49019
[29] R. Sundaram:
A First Course in Optimization Theory. Cambridge University Press, Cambridge 1996.
MR 1402910 |
Zbl 0885.90106