[1] N. P. I. Aneke: Control of Underactuated Mechanical Systems. Ph.D. Thesis. Technische Universiteit Eindhoven, Eindhoven 2002.
[2] I. Fantoni, R. Lozano: Non-linear Control for Underactuated Mechanical Systems. Springer-Verlag, London 2002.
[4] R. Olfati-Saber: Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles. Ph.D. Thesis. Massachusetts Institute of Technology, Boston 2001.
[5] J. Rubí, Á. Rubio, A. Avello: Swing-up control problem for a self-erecting double inverted pendulum. IEE Proc. - Control Theory App. 149 (2002), 2, 169-175.
[6] P. Steinbauer: Nonlinear Control of the Nonlinear Mechanical Systems. Ph.D. Thesis. Czech Technical University in Prague, Prague 2002. (in Czech)
[7] L. Udawatta, K. Watanabe, K. Izumi, K. Kuguchi:
Control of underactuated robot manipulators using switching computed torque method: GA based approach. Soft Computing 8 (2003), 51-60.
DOI 10.1007/s00500-002-0257-8
[8] M. Valášek: Control of elastic industrial robots by nonlinear dynamic compensation. Acta Polytechnica 33 (1993), 1, 15-30.
[9] M. Valášek: Design and control of under-actuated and over-actuated mechanical systems - Challenges of mechanics and mechatronics. Supplement to Vehicle System Dynamics 40 (2004), 37-50.
[10] M. Valášek: Exact input-output linearization of general multibody system by dynamic feedback. In: Multibody Dynamics 2005, Eccomas Conference, Madrid 2005.
[11] M. Valášek, P. Steinbauer: Nonlinear control of multibody systems. In: Euromech Colloquium 404, Advances in Computational Multibody Dynamics, Lisboa: Instituto Suparior Technico Av. Rovisco Pais, 1999, 437-444.