[1] M. A. Aon, S. Cortassa, D. Lloyd:
Chaotic dynamics and fractal space in biochemistry: Simplicity underlies complexity. Cell Biology Internat. 24 (2000), 581-587.
DOI 10.1006/cbir.2000.0572
[2] K. B. Arman, K. Fallahi, N. Pariz, H. Leung:
A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Comm. Nonlinear Sci. Numer. Simul. 14 (2009), 863-879.
DOI 10.1016/j.cnsns.2007.11.011 |
MR 2449755 |
Zbl 1221.94049
[4] A. Charef, H. H. Sun, Y. Y. Tsao, B. Onaral:
Fractal system as represented by singularity function. IEEE Trans. Automat. Control 37 (1992),1465-1470.
MR 1183117 |
Zbl 0825.58027
[5] M. J. Chen, D. P. Li, A. J. Zhang:
Chaotic synchronization based on nonlinear state-observer and its application in secure communication. J. Marine Sci. Appl. 3 (2004), 64-70.
DOI 10.1007/BF02918650
[11] J. B. Hu, Y. Han, L. D. Zhao:
Synchronizing fractional chaotic systems based on Lyapunov equation. Acta Physica Sinica 57 (2008), 7522-7526.
MR 2516989 |
Zbl 1199.37060
[12] J. B. Hu, Y. Han, L. D. Zhao:
Adaptive control the fractional unified chaotic system based on the estimated eigenvalue theory. J. Physics: Conference Series 96 (2008), 012151.
DOI 10.1088/1742-6596/96/1/012151
[13] A. A. Koronovskii, O. I. Moskalenko, A. E. Hramov:
On the use of chaotic synchronization for secure communication. Physics-Uspekhi 52 (2009), 1213-1238.
DOI 10.3367/UFNe.0179.200912c.1281
[14] J. H. Lü, G. R. Chen:
Generating multi-scroll chaotic attractors: Theories, methods and applications. Internat. J. Bifurcation Chaos 16 (2006), 775-858.
DOI 10.1142/S0218127406015179
[15] J. H. Lü, G. R. Chen, X. H. Yu, H. Leung:
Design and analysis of multiscroll chaotic attractors from saturated function series. IEEE Trans. Circuits Systems - I: Regular Papers 51 (2003), 2476-2490.
MR 2104664
[18] J. H. Lü, S. M. Yu, H. Leung, G. R. Chen:
Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Systems - I: Regular Papers 53 (2006), 149-165.
DOI 10.1109/TCSI.2005.854412
[19] G. Maione, P. Lino:
New tuning rules for fractional $PI^\alpha$ controllers. Nonlinear Dynamics 49 (2007), 251-257.
DOI 10.1007/s11071-006-9125-x
[20] D. Matignon: Stability result on fractional differential equations with applications to control processing. In: Proc. IMACS-SMC (IMACS-SMC), Lille 1996, pp. 963-968.
[21] T. Menacer, N. Hamri: Synchronization of different chaotic fractional-order systems via approached auxiliary system the modified Chua oscillator and the modified Van der Pol-Duffing oscillator. Electr. J. Theoret. Phys. 8 (2011), 253-266.
[22] K. S. Miller, B. Ross:
An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York 1993.
MR 1219954 |
Zbl 0789.26002
[23] C. A. Monje, V. Feliu: The fractional-order lead compensator. In: IEEE International Conference on Computational Cybernetics (ICCC), Vienna 2004, pp. 347-352.
[24] C. A. Monje, B. M. Vinagre, V. Feliu, Y. Q. Chen: Tuning and auto-tuning of fractional order controllers for industry applications. Control Engrg. Practice 16 (2008),798-812.
[25] G. J. Penga, Y. L. Jiang:
Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Phys. Lett. A 372 (2008), 3963-3970.
DOI 10.1016/j.physleta.2008.01.061 |
MR 2418398
[26] G. J. Penga, Y. L. Jiang, F. Chen:
Generalized synchronization of fractional order chaotic systems. Physica A 387 (2008), 3738-3746.
DOI 10.1016/j.physa.2008.02.057
[27] M. A. Savi: Chaos and order in biomedical rhythms. J. Brazil. Soc. Mechan. Sci. Engrg. 27 (2005), 157-169.
[28] D. V. Senthilkumar, M. Lakshmanan, J. Kurths:
Phase synchronization in time-delay systems. Phys. Rev. E 74 (2006), 035205.
DOI 10.1103/PhysRevE.74.035205
[29] K. S. Tang, G. Q. Zhong, G. Chen, K. F. Man:
Generation of N-scroll attractors via Sine function. IEEE Trans. Circuits and Systems - I: Fundamental Theory Appl. 48 (2001), 1369-1372.
MR 1854958
[34] Z. Wang, Y. T. Wu, Y. X. Li, Y. J. Zou: Adaptive backstepping control of a nonlinear electromechanical system with unknown parameters. In: Proc. 4th International Conference on Computer Science and Education (ICCSE), Nanning 2009, pp. 441-444.
[35] Z. Wang, Y. T. Wu, Y. J. Zou: Analysis and sliding control of multi-scroll jerk circuit chaotic system. J. Xi'an University of Science and Technology 29 (2009), 765-768.
[38] P. Zhou, X. F. Cheng, N. Y. Zhang:
Generalized synchronization between different fractional-order chaotic systems. Commun. Theoret. Phys. 50 (2008), 931-934.
DOI 10.1088/0253-6102/50/4/27