Previous |  Up |  Next

Article

Keywords:
fractional chaotic systems; fractional differential controller; GS; state observer; Gershgorin circle theorem; pole assignment algorithm; SC; chaotic masking
Summary:
A fractional differential controller for incommensurate fractional unified chaotic system is described and proved by using the Gershgorin circle theorem in this paper. Also, based on the idea of a nonlinear observer, a new method for generalized synchronization (GS) of this system is proposed. Furthermore, the GS technique is applied in secure communication (SC), and a chaotic masking system is designed. Finally, the proposed fractional differential controller, GS and chaotic masking scheme are showed by using numerical and experimental simulations.
References:
[1] M. A. Aon, S. Cortassa, D. Lloyd: Chaotic dynamics and fractal space in biochemistry: Simplicity underlies complexity. Cell Biology Internat. 24 (2000), 581-587. DOI 10.1006/cbir.2000.0572
[2] K. B. Arman, K. Fallahi, N. Pariz, H. Leung: A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Comm. Nonlinear Sci. Numer. Simul. 14 (2009), 863-879. DOI 10.1016/j.cnsns.2007.11.011 | MR 2449755 | Zbl 1221.94049
[3] S. Banerjee, D. Ghosh, A. C. Roy: Multiplexing synchronization and its applications in cryptography. Physica Scripta 78 (2008), 015010. DOI 10.1088/0031-8949/78/01/015010 | MR 2447532 | Zbl 1166.34041
[4] A. Charef, H. H. Sun, Y. Y. Tsao, B. Onaral: Fractal system as represented by singularity function. IEEE Trans. Automat. Control 37 (1992),1465-1470. MR 1183117 | Zbl 0825.58027
[5] M. J. Chen, D. P. Li, A. J. Zhang: Chaotic synchronization based on nonlinear state-observer and its application in secure communication. J. Marine Sci. Appl. 3 (2004), 64-70. DOI 10.1007/BF02918650
[6] G. Chen, X. Yu: Chaos Control: Theory and Applications. Springer, Berlin 2003. MR 2014603 | Zbl 1029.00015
[7] K. Diethelm, N. J. Ford, A. D. Freed: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics 29 (2002), 3-22. DOI 10.1023/A:1016592219341 | MR 1926466 | Zbl 1009.65049
[8] K. Diethelm, N. J. Ford, A. D. Freed: Detailed error analysis for a fractional Adams method. Numerical Algorithms 36 (2004), 31-52. DOI 10.1023/B:NUMA.0000027736.85078.be | MR 2063572 | Zbl 1055.65098
[9] D. Ghosh: Nonlinear active observer-based generalized synchronization in time-delayed systems. Nonlinear Dynamics 59 (2010), 179-190. DOI 10.1007/s11071-009-9538-4 | MR 2585292 | Zbl 1183.70050
[10] R. M. Guerra, W. Yu: Chaotic synchronization and secure communication via sliding-mode observer. Internat. J. Bifurcation Chaos 18 (2008), 235-243. DOI 10.1142/S0218127408020264 | MR 2400832 | Zbl 1146.93317
[11] J. B. Hu, Y. Han, L. D. Zhao: Synchronizing fractional chaotic systems based on Lyapunov equation. Acta Physica Sinica 57 (2008), 7522-7526. MR 2516989 | Zbl 1199.37060
[12] J. B. Hu, Y. Han, L. D. Zhao: Adaptive control the fractional unified chaotic system based on the estimated eigenvalue theory. J. Physics: Conference Series 96 (2008), 012151. DOI 10.1088/1742-6596/96/1/012151
[13] A. A. Koronovskii, O. I. Moskalenko, A. E. Hramov: On the use of chaotic synchronization for secure communication. Physics-Uspekhi 52 (2009), 1213-1238. DOI 10.3367/UFNe.0179.200912c.1281
[14] J. H. Lü, G. R. Chen: Generating multi-scroll chaotic attractors: Theories, methods and applications. Internat. J. Bifurcation Chaos 16 (2006), 775-858. DOI 10.1142/S0218127406015179
[15] J. H. Lü, G. R. Chen, X. H. Yu, H. Leung: Design and analysis of multiscroll chaotic attractors from saturated function series. IEEE Trans. Circuits Systems - I: Regular Papers 51 (2003), 2476-2490. MR 2104664
[16] J. H. Lü, G. R. Chen, S. C. Zhang: The compound structure of a new chaotic attractor. Chaos, Solitons Fractals 14 (2002), 669-672. DOI 10.1016/S0960-0779(02)00007-3 | MR 1906649 | Zbl 1067.37042
[17] J. H. Lü, F. L. Han, X. H. Yu, G. R. Chen: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica 40 (2004), 1677-1687. DOI 10.1016/j.automatica.2004.06.001 | MR 2155461 | Zbl 1162.93353
[18] J. H. Lü, S. M. Yu, H. Leung, G. R. Chen: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Systems - I: Regular Papers 53 (2006), 149-165. DOI 10.1109/TCSI.2005.854412
[19] G. Maione, P. Lino: New tuning rules for fractional $PI^\alpha$ controllers. Nonlinear Dynamics 49 (2007), 251-257. DOI 10.1007/s11071-006-9125-x
[20] D. Matignon: Stability result on fractional differential equations with applications to control processing. In: Proc. IMACS-SMC (IMACS-SMC), Lille 1996, pp. 963-968.
[21] T. Menacer, N. Hamri: Synchronization of different chaotic fractional-order systems via approached auxiliary system the modified Chua oscillator and the modified Van der Pol-Duffing oscillator. Electr. J. Theoret. Phys. 8 (2011), 253-266.
[22] K. S. Miller, B. Ross: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York 1993. MR 1219954 | Zbl 0789.26002
[23] C. A. Monje, V. Feliu: The fractional-order lead compensator. In: IEEE International Conference on Computational Cybernetics (ICCC), Vienna 2004, pp. 347-352.
[24] C. A. Monje, B. M. Vinagre, V. Feliu, Y. Q. Chen: Tuning and auto-tuning of fractional order controllers for industry applications. Control Engrg. Practice 16 (2008),798-812.
[25] G. J. Penga, Y. L. Jiang: Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Phys. Lett. A 372 (2008), 3963-3970. DOI 10.1016/j.physleta.2008.01.061 | MR 2418398
[26] G. J. Penga, Y. L. Jiang, F. Chen: Generalized synchronization of fractional order chaotic systems. Physica A 387 (2008), 3738-3746. DOI 10.1016/j.physa.2008.02.057
[27] M. A. Savi: Chaos and order in biomedical rhythms. J. Brazil. Soc. Mechan. Sci. Engrg. 27 (2005), 157-169.
[28] D. V. Senthilkumar, M. Lakshmanan, J. Kurths: Phase synchronization in time-delay systems. Phys. Rev. E 74 (2006), 035205. DOI 10.1103/PhysRevE.74.035205
[29] K. S. Tang, G. Q. Zhong, G. Chen, K. F. Man: Generation of N-scroll attractors via Sine function. IEEE Trans. Circuits and Systems - I: Fundamental Theory Appl. 48 (2001), 1369-1372. MR 1854958
[30] M. S. Tavazoei, M. Haeri, S. Bolouki, M. Siami: Using fractional-order integrator to control chaos in single-input chaotic systems. Nonlinear Dynamics 55 (2009), 179-190. DOI 10.1007/s11071-008-9353-3 | MR 2466113 | Zbl 1220.70025
[31] L. A. B. Torres, L. A. Aguirre: Transmitting information by controlling nonlinear oscillators. Physica D 196 (2004), 387-406. DOI 10.1016/j.physd.2004.06.006 | MR 2090359 | Zbl 1069.34057
[32] R. S. Varga: Matrix Iterative Analysis. Springer, Berlin 2000. MR 1753713 | Zbl 1216.65042
[33] H. U. Voss: Dynamic long-term anticipation of chaotic states. Phys. Rev. Lett. 87 (2001), 014102. DOI 10.1103/PhysRevLett.87.014102
[34] Z. Wang, Y. T. Wu, Y. X. Li, Y. J. Zou: Adaptive backstepping control of a nonlinear electromechanical system with unknown parameters. In: Proc. 4th International Conference on Computer Science and Education (ICCSE), Nanning 2009, pp. 441-444.
[35] Z. Wang, Y. T. Wu, Y. J. Zou: Analysis and sliding control of multi-scroll jerk circuit chaotic system. J. Xi'an University of Science and Technology 29 (2009), 765-768.
[36] T. Yang, L. O. Chua: Generalized synchronization of chaos via linear transforms. Internat. J. Bifurcation Chaos 9 (1999), 215-219. DOI 10.1142/S0218127499000092 | MR 1689607
[37] R. Zhang, Z. Y. Xu, S. X. Yang, X. M. He: Generalized synchronization via impulsive contro. Chaos, Solitons Fractals 38 (2008), 97-105. DOI 10.1016/j.chaos.2006.10.050 | MR 2417647
[38] P. Zhou, X. F. Cheng, N. Y. Zhang: Generalized synchronization between different fractional-order chaotic systems. Commun. Theoret. Phys. 50 (2008), 931-934. DOI 10.1088/0253-6102/50/4/27
Partner of
EuDML logo