Article
Keywords:
random Dirichlet series; Rademacher-Dirichlet series; Steinhaus-Dirichlet series; growth
Summary:
In the paper we obtain that, under some condition, the Rademacher-Dirichlet series or the Steinhaus-Dirichlet series on the whole plane and on the horizontal zone almost surely have the same growth.
References:
[2] Reac, Paley, Zygmund, A.:
On some series of functions (1), (2), (3). Proc. Camb. Phil. Soc. 26 (1930) 337-357, 458-474; 28 (1932), 190-205.
DOI 10.1017/S0305004100016078
[4] Jiarong, Yu:
Some properties of random Dirichlet series. Acta Math. Sin. 21 (1978), 97-118 Chinese.
MR 0507192
[5] Knopp, K.:
Über de Konvergenzabscisse des Laplace-Integrals. Math. Z. (1951), 54 291-296 German.
MR 0042539
[6] Valiron, G.:
Sur l'abscisse de convergence des séries de Dirichlet. Bulletin de la Société Mathématique de France 52 (1924), 166-174 French.
DOI 10.24033/bsmf.1051 |
MR 1504844
[7] Tanaka, C.:
Note on Dirichlet series (V), On the integral functions defined by Dirichlet series (I). Tôhoku Math. J., II. Ser. (1953), 5 67-78.
MR 0057320 |
Zbl 0053.37502
[8] Valiron, G.: Théorie genérale des séries de Dirichlet. Mémorial des sciences mathématiques, Fasc. 17 (1926), French.
[9] Valiron, G.:
Entire functions and Borel's directions. Proc. Nat. Acad. Sci. USA (1934), 20 211-215.
Zbl 0009.02503