[1] Burenkov, V. I., Guliyev, H. V.:
Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces. Studia Mathematica 163 (2004), 157-176.
DOI 10.4064/sm163-2-4 |
MR 2047377
[2] Burenkov, V. I., Guliyev, H. V., Guliyev, V. S.:
Necessary and sufficient conditions for boundedness of the fractional maximal operator in the local Morrey-type spaces. J. Comput. Appl. Math. 208 (2007), 280-301.
DOI 10.1016/j.cam.2006.10.085 |
MR 2347750
[3] Burenkov, V. I., Guliyev, V. S., Serbetci, A., Tararykova, T. V.:
Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces. Doklady Ross. Akad. Nauk. 422 (2008), 11-14.
MR 2475077
[4] Burenkov, V. I., Gogatishvili, A., Guliyev, V. S., Mustafayev, R. Ch.:
Boundedness of the fractional maximal operator in Morrey-type spaces. Complex Var. Elliptic Equ. 55 (2010), 739-758.
MR 2674862
[5] Burenkov, V., Gogatishvili, A., Guliyev, V., Mustafayev, R.:
Boundedness of the fractional maximal operator in local Morrey-type spaces. Preprint, Institute of Mathematics, AS CR, Praha (2008), 20.
MR 2674862
[6] Calderón, A. P., Zygmund, A.:
Singular integral operators and differential equations. Amer. J. Math. 79 (1957), 901-921.
DOI 10.2307/2372441 |
MR 0100768
[7] Carro, M., Pick, L., Soria, J., Stepanov, V. D.:
On embeddings between classical Lorentz spaces. Math. Ineq. & Appl. 4 (2001), 397-428.
MR 1841071 |
Zbl 0996.46013
[8] Chiarenza, F., Frasca, M.:
Morrey spaces and Hardy-Littlewood maximal function. Rend. Math. 7 (1987), 273-279.
MR 0985999 |
Zbl 0717.42023
[10] Guliyev, V. S.: Integral operators on function spaces on homogeneous groups and on domains in ${\mathbb R}^n$. Doctoral dissertation, Moskva, Mat. Inst. Steklov (1994), 329 Russian.
[11] Guliyev, V. S.: Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications. Baku, Elm. (1999), 332 Russian.
[12] Guliyev, V. S.:
Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces. J. Inequal. Appl. 2009, Art. ID 503948 20.
MR 2579556 |
Zbl 1193.42082
[14] Mizuhara, T.:
Boundedness of some classical operators on generalized Morrey spaces. Harmonic Analysis S. Igari ICM 90 Satellite Proceedings, Springer, Tokyo (1991), 183-189.
MR 1261439 |
Zbl 0771.42007
[17] Nakai, E.:
Hardy-Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces. Math. Nachr. 166 (1994), 95-103.
DOI 10.1002/mana.19941660108 |
MR 1273325
[19] Peetre, J.:
On convolution operators leaving ${\mathcal L}^{p,\lambda}$ spaces invariant. Ann. Mat. Appl. IV. Ser. 72 (1966), 295-304.
MR 0209917
[20] Shen, Z. W.:
$L_p$ estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546.
DOI 10.5802/aif.1463 |
MR 1343560
[22] Stein, E. M.:
Harmonic analysis: Real variable methods, orthogonality, and oscillatory integrals. Princeton Univ. Press, Princeton, NJ (1993).
MR 1232192 |
Zbl 0821.42001
[23] Sugano, S.:
Estimates for the operators $V^{\alpha} (-\Delta+V)^{-\beta}$ and $V^{\alpha} \nabla (-\Delta+V)^{-\beta}$ with certain nonnegative potentials $V$. Tokyo J. Math. 21 (1998), 441-452.
MR 1663618
[25] Zhong, J. P.:
Harmonic analysis for some Schrödinger type operators. PhD thesis, Princeton University (1993).
MR 2689454