[2] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, D.:
Discontinuos Galerkin methods for elliptic problems. Discontinuous Galerkin methods. Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering 11 Cockburn, B., et al. Springer, Berlin (2000), 89-101.
MR 1842165
[3] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, D.:
Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001), 1749-1779.
DOI 10.1137/S0036142901384162 |
MR 1885715
[7] Dolejší, V.:
Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows. Commun. Comput. Phys. 4 (2008), 231-274.
MR 2440946
[9] Dolejší, V., Feistauer, M.:
Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems. Numer. Func. Anal. Optimiz. 26 (2005), 349-383.
DOI 10.1081/NFA-200067298 |
MR 2153838 |
Zbl 1078.65078
[12] Feistauer, M., Dolejší, V., Kučera, V.:
On the discontinuous Galerkin method for the simulation of compressible flow with wide range of Mach numbers. Comput. Vis. Sci. 10 (2007), 17-27.
DOI 10.1007/s00791-006-0051-8 |
MR 2295931
[13] Feistauer, M., Felcman, J., Straškaraba, I.:
Mathematical and Computational Methods for Compressible Flow. Clarendon Press, Oxford (2003).
MR 2261900
[16] Neustupa, J.:
Existence of a weak solution to the Navier-Stokes equation in a general time-varying domain by the Rothe method. Math. Meth. Appl. Sci. 32 (2009), 653-683.
DOI 10.1002/mma.1059 |
MR 2504002 |
Zbl 1160.35494
[17] Nomura, T., Hughes, T. J. R.:
An arbitrary Lagrangian-{E}ulerian finite element method for interaction of fluid and a rigid body. {Comput. Methods Appl. Mech. Engrg.} 95 (1992), 115-138.
DOI 10.1016/0045-7825(92)90085-X |
Zbl 0756.76047
[18] Prokopová, J.: Numerical solution of compressible flow. Master thesis, Charles University, Praha (2008).
[19] Punčochářová, P., Fürst, J., Kozel, K., Horáček, J.:
Numerical solution of compressible flow with low Mach number through oscillating glottis. Proceedings of the 9th International Conference on Flow-Induced Vibration (FIV 2008), Praha, Institute of Thermomechanics AS CR (2008), 135-140.
MR 3615921
[20] Sváček, P., Feistauer, M., Horáček, J.:
Numerical simulation of flow induced airfoil vibrations with large amplitudes. J. Fluids Structures 23 (2007), 391-411.
DOI 10.1016/j.jfluidstructs.2006.10.005
[21] Vegt, J. J. W. van der, Ven, H. van der:
Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flow. J. Comput. Phys. 182 (2002), 546-585.
DOI 10.1006/jcph.2002.7185 |
MR 1941852
[23] Zolésio, J. P.:
Approximation for the wave equation in a moving domain. Proceedings of the conference Control of Partial Differential Equations. IFIP WG 7.2, Marcel Dekker, Lect. Notes Pure Appl. Math. 165, New York (1994), 271-279.
MR 1299150 |
Zbl 0831.35095