Previous |  Up |  Next

Article

Keywords:
discrete differential geometry; discrete affine minimal surfaces; discrete conjugate nets; PQ meshes
Summary:
In this paper we discuss planar quadrilateral (PQ) nets as discrete models for convex affine surfaces. As a main result, we prove a necessary and sufficient condition for a PQ net to admit a Lelieuvre co-normal vector field. Particular attention is given to the class of surfaces with discrete harmonic co-normals, which we call discrete affine minimal surfaces, and the subclass of surfaces with co-planar discrete harmonic co-normals, which we call discrete improper affine spheres. Within this classes, we show how to solve discrete Cauchy problems analogous to the Cauchy problems for smooth analytic improper affine spheres and smooth analytic affine minimal surfaces.
References:
[1] Aledo, J. A., Chaves, R. M. B., Gálvez, J. A.: The Cauchy problem for improper affine spheres and the Hessian one equation. Trans. Amer. Math. Soc. 359 (9) (2007), 4183–4208. DOI 10.1090/S0002-9947-07-04378-4 | MR 2309181 | Zbl 1121.53008
[2] Aledo, J. A., Martínez, A., Milán, F.: The affine Cauchy problem. J. Math. Anal. Appl. 351 (2009), 70–83. DOI 10.1016/j.jmaa.2008.09.055 | MR 2472921 | Zbl 1161.53012
[3] Bobenko, A. I., Schief, W. K.: Affine spheres: Discretization via duality relations. Experiment. Math. 8 (1999), no. 3, 261–280. DOI 10.1080/10586458.1999.10504404 | MR 1724159 | Zbl 0972.53012
[4] Discrete Differential Geometry. Oberwolfach Seminars, vol. 38, Birkhauser, 2008. MR 2407724 | Zbl 1185.68876
[5] Bobenko, A. I., Suris, Y. B.: Discrete Differential Geometry: Integrable Structure. Graduate Studies in Mathematics, Vol. 98, AMS, 2008. MR 2467378 | Zbl 1158.53001
[6] Calabi, E.: Hypersurfaces with maximal affinely invariant area. Amer. J. Math. 104 (1982), 91–126. DOI 10.2307/2374069 | MR 0648482 | Zbl 0501.53037
[7] Calabi, E.: Convex affine maximal surfaces. Results Math. 13 (1988), 199–223. DOI 10.1007/BF03323241 | MR 0941331 | Zbl 0653.53006
[8] Craizer, M., Anciaux, H., Lewiner, T. M.: Discrete affine minimal surfaces with indefinite metric. Differential Geom. Appl. (2009). DOI 10.1016/j.difgeo.2009.07.004 | MR 2594460
[9] Craizer, M., da Silva Moacyr, A. H. B., Teixeira, R. C.: Area distances of convex plane curves and iImproper affine spheres. SIAM J. Imaging Sci. 1 (3) (2008), 209–227. DOI 10.1137/080714610 | MR 2486030
[10] Matsuura, N.: A discrete analogue of the affine Backlund transformation. Fukuoka Univ. Sci. Rep. 40 (2) (2010), no. 2, 163–173. MR 2766406 | Zbl 1227.39005
[11] Matsuura, N., Urakawa, H.: Discrete improper affine spheres. J. Geom. Phys. 45 (1–2) (2003), 164–183. DOI 10.1016/S0393-0440(02)00134-1 | MR 1949349 | Zbl 1035.53022
[12] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge University Press, 1994. MR 1311248 | Zbl 0834.53002
Partner of
EuDML logo