[1] Adkins, W. A., Weintraub, S. H.:
Algebra. An Approach via Module Theory. Springer New York (1992).
MR 1181420 |
Zbl 0768.00003
[2] Artin, E.:
Geometric Algebra. John Wiley & Sons/Interscience Publishers New York (1988).
MR 1009557 |
Zbl 0642.51001
[3] Berndt, R.:
An Introduction to Symplectic Geometry. American Mathematical Society Providence (2001).
MR 1793955 |
Zbl 0986.53028
[4] Silva, A. Cannas da:
Lectures on Symplectic Geometry. Springer Berlin (2001).
MR 1853077
[5] Chambadal, L., Ovaert, J. L.:
Algèbre linéaire et algèbre tensorielle. Dunod Paris (1968).
MR 0240108 |
Zbl 0186.33402
[6] Crumeyrolle, A.:
Orthogonal and Symplectic Clifford Algebras. Spinor Structures. Kluwer Dordrecht (1990).
MR 1044769 |
Zbl 0701.53003
[8] Gruenberg, K. W., Weir, A. J.: Linear Geometry, 2nd edition. Springer New York, Heidelberg, Berlin (1977).
[9] Mallios, A.:
Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry. Volume I: Vector Sheaves. General Theory. Kluwer Dordrecht (1998).
Zbl 0904.18001
[10] Mallios, A.:
Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry. Volume II: Geometry. Examples and Applications. Kluwer Dordrecht (1998).
Zbl 0904.18002
[12] Mallios, A.:
Modern Differential Geometry in Gauge Theories. Vol. I: Maxwell Fields. Birkhäuser Boston (2006).
MR 2189128
[14] Mallios, A., Ntumba, P. P.:
Fundamentals for symplectic $\mathcal{A}$-modules. Affine Darboux theorem. Rend. Circ. Mat. Palermo 58 (2009), 169-198.
MR 2533910
[15] Mallios, A., Ntumba, P. P.: Symplectic reduction of sheaves of $\mathcal{A}$-modules. \\arXiv:0802.4224.