[2] Piazza, L. Di, Musiał, K.:
Characterizations of Kurzweil-Henstock-Pettis integrable functions. Stud. Math. 176 (2006), 159-176.
DOI 10.4064/sm176-2-4 |
MR 2264361
[3] Piazza, L. Di:
Kurzweil-Henstock type integration on Banach spaces. Real Anal. Exch. 29 (2003-2004), 543-556.
MR 2083796
[5] Gordon, R. A.:
The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics. Vol. 4. Providence, AMS (1994), 395.
MR 1288751 |
Zbl 0807.26004
[9] Kurzweil, J., Jarník, J.:
Equiintegrability and controlled convergence of Perron-type integrable functions. Real Anal. Exch. 17 (1992), 110-139.
DOI 10.2307/44152200 |
Zbl 0754.26003
[10] Musiał, K.:
Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces. Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165.
MR 0922998 |
Zbl 0636.28005
[11] Musiał, K.:
Topics in the theory of Pettis integration. Rend. Ist. Math. Univ. Trieste 23 (1991), 177-262.
MR 1248654 |
Zbl 0798.46042
[12] Musiał, K.:
Pettis integral. Handbook of Measure Theory Vol. I and II E. Pap Amsterdam: North-Holland (2002), 531-586.
MR 1954622 |
Zbl 1043.28010
[13] Schaefer, H. H.:
Topological Vector Spaces. Graduate Texts in Mathematics. 3. 3rd printing corrected. New York-Heidelberg-Berlin: Springer-Verlag XI (1971), 294.
MR 0342978 |
Zbl 0217.16002
[14] Schwabik, Š., Guoju, Y.:
Topics in Banach Space Integration. Series in Real Analysis 10. Hackensack, NJ: World Scientific (2005), 312.
MR 2167754