Previous |  Up |  Next

Article

Keywords:
Henstock-Kurzweil-Pettis integral; controlled convergence theorem; complete locally convex spaces; $m$-dimensional compact interval
Summary:
In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for Henstock-Kurzweil-Pettis integral of functions defined on $m$-dimensional compact intervals of $\mathbb {R}^{m}$ and taking values in a Banach space. Then, we extend this theorem to complete locally convex topological vector spaces.
References:
[1] Cichoń, M.: Convergence theorems for the Henstock-Kurzweil-Pettis integral. Acta Math. Hung. 92 (2001), 75-82. DOI 10.1023/A:1013756111769 | MR 1924251 | Zbl 1001.26003
[2] Piazza, L. Di, Musiał, K.: Characterizations of Kurzweil-Henstock-Pettis integrable functions. Stud. Math. 176 (2006), 159-176. DOI 10.4064/sm176-2-4 | MR 2264361
[3] Piazza, L. Di: Kurzweil-Henstock type integration on Banach spaces. Real Anal. Exch. 29 (2003-2004), 543-556. MR 2083796
[4] Fremlin, D. H.: Pointwise compact sets of measurable functions. Manuscr. Math. 15 (1975), 219-242. DOI 10.1007/BF01168675 | MR 0372594 | Zbl 0303.28006
[5] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics. Vol. 4. Providence, AMS (1994), 395. MR 1288751 | Zbl 0807.26004
[6] Guoju, Y., Tianqing, A.: On Henstock-Dunford and Henstock-Pettis integrals. Int. J. Math. Sci. 25 (2001), 467-478. DOI 10.1155/S0161171201002381 | MR 1823609
[7] Guoju, Y.: On the Henstock-Kurzweil-Dunford and Kurzweil-Henstock-Pettis integrals. Rocky Mt. J. Math. 39 (2009), 1233-1244. DOI 10.1216/RMJ-2009-39-4-1233 | MR 2524711 | Zbl 1214.28009
[8] James, R.: Weak compactness and reflexivity. Isr. J. Math. 2 (1964), 101-119. DOI 10.1007/BF02759950 | MR 0176310 | Zbl 0127.32502
[9] Kurzweil, J., Jarník, J.: Equiintegrability and controlled convergence of Perron-type integrable functions. Real Anal. Exch. 17 (1992), 110-139. DOI 10.2307/44152200 | Zbl 0754.26003
[10] Musiał, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces. Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165. MR 0922998 | Zbl 0636.28005
[11] Musiał, K.: Topics in the theory of Pettis integration. Rend. Ist. Math. Univ. Trieste 23 (1991), 177-262. MR 1248654 | Zbl 0798.46042
[12] Musiał, K.: Pettis integral. Handbook of Measure Theory Vol. I and II E. Pap Amsterdam: North-Holland (2002), 531-586. MR 1954622 | Zbl 1043.28010
[13] Schaefer, H. H.: Topological Vector Spaces. Graduate Texts in Mathematics. 3. 3rd printing corrected. New York-Heidelberg-Berlin: Springer-Verlag XI (1971), 294. MR 0342978 | Zbl 0217.16002
[14] Schwabik, Š., Guoju, Y.: Topics in Banach Space Integration. Series in Real Analysis 10. Hackensack, NJ: World Scientific (2005), 312. MR 2167754
Partner of
EuDML logo