Article
Keywords:
Diophantine approximations; Diophantine exponents; Jarník's transference principle
Summary:
Let $\Theta = (\theta _1,\theta _2,\theta _3)\in \mathbb {R}^3$. Suppose that $1,\theta _1,\theta _2,\theta _3$ are linearly independent over $\mathbb {Z}$. For Diophantine exponents $$ \begin {aligned} \alpha (\Theta ) &= \sup \{\gamma >0\colon \limsup _{t\to +\infty } t^\gamma \psi _\Theta (t) <+\infty \},\\ \beta (\Theta ) &= \sup \{\gamma >0\colon \liminf _{t\to +\infty } t^\gamma \psi _\Theta (t)<+\infty \} \end {aligned} $$ we prove $$ \beta (\Theta ) \ge \frac {1}{2} \Bigg ( \frac {\alpha (\Theta )}{1-\alpha (\Theta )} +\sqrt {\Big (\frac {\alpha (\Theta )}{1-\alpha (\Theta )} \Big )^2 +\frac {4\alpha (\Theta )}{1-\alpha (\Theta )}} \Bigg ) \alpha (\Theta ). $$
References:
[1] Jarník, V.:
Contribution à la théorie des approximations diophantiennes linéaires et homogènes. Czech. Math. J. 4 (1954), 330-353 Russian, French summary.
MR 0072183 |
Zbl 0057.28303
[3] Moshchevitin, N. G.:
Contribution to Vojtěch Jarník. Preprint available at arXiv:0912.2442v3.
MR 0095106