Previous |  Up |  Next

Article

Keywords:
order topology; subspace topology; ordered field; Archimedes' axiom; axiom of continuity
Summary:
An ordered field is a field which has a linear order and the order topology by this order. For a subfield $F$ of an ordered field, we give characterizations for $F$ to be Dedekind-complete or Archimedean in terms of the order topology and the subspace topology on $F$.
References:
[1] Engelking R.: General Topology. Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[2] Gillman L., Jerison M.: Rings of continuous functions. D. Van Nostrand Co., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199 | Zbl 0327.46040
[3] Liu C., Tanaka Y.: Metrizability of ordered additive groups. Tsukuba J. Math. 35 (2011), 169–183.
[4] Tanaka Y.: The axiom of continuity, and monotone functions. Bull. Tokyo Gakugei Univ. Nat. Sci. 57 (2005), 7–23, (Japanese). MR 2286673 | Zbl 1087.26500
[5] Tanaka Y.: Ordered fields and metrizability. Bull. Tokyo Gakugei Univ. Nat. Sci. 61(2009), 1-9. MR 2574357 | Zbl 1185.54035
[6] Tanaka Y.: Ordered fields and the axiom of continuity. II. Bull. Tokyo Gakugei Univ. Nat. Sci. 63 (2011), 1–11. MR 1303666
Partner of
EuDML logo