[1] Arnold, V. I.:
Mathematical Methods of Classical Mechanics. Springer–Verlag, 1989.
MR 0997295
[4] Bogoliubov, N. N., Shirkov, D. V.:
Introduction to the Theory of Quantized Fields. 3rd ed., John Wiley and Sons Inc., 1980.
MR 0579493
[5] de Wit, B., Smith, J.: Field Theory in Particle Physics. vol. 1, North–Holland, 1986.
[8] Ibragimov, N. Kh.:
Invariant variational problems and the conservation laws (remarks on E. Noether’s theorem). Theoret. Mat.h Phys. 1 (1969), 267–274.
DOI 10.1007/BF01035741 |
MR 0464998
[9] José, J. V., Saletan, E. J.:
Classical Dynamics: A Contemporary Approach. Cambridge Univ. Press, 1998.
MR 1640663
[10] Komorowski, J.:
A modern version of the E. Noether’s theorems in the calculus of variations, Part I. Studia Math. 29 (1968), 261–273.
MR 0225205
[11] Noether, E.: Invariante Variationsprobleme. Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Math.–Phys. Klasse (1918), 235—257, English translation: arXiv:physics/0503066.
[12] Olver, P. J.:
Applications of Lie Groups to Differential Equations. 2nd ed., Springer–Verlag, 1993.
MR 1240056 |
Zbl 0785.58003
[13] Polchinski, J.:
String Theory. vol. 1, Cambridge Univ. Press, 1998.
Zbl 1006.81522
[14] Ramond, P.:
Field Theory: A Modern Primer. Addison–Wesley, 1989.
MR 1083767
[15] Sarlet, W., Cantrijn, F.:
Generalizations of Noether’s theorem in classical mechanics. SIAM Rev. 23 (1981), 467–494.
MR 0636081 |
Zbl 0474.70014
[16] Trautman, A.:
Noether equations and conservation laws. Commun. Math. Phys. 6 (1967), 248–261.
MR 0220470 |
Zbl 0172.27803