Previous |  Up |  Next

Article

Keywords:
Noether’s first Theorem
Summary:
We give an elementary proof of Noether's first Theorem while stressing the magical fact that the global quasi-symmetry only needs to hold for one fixed integration region. We provide sufficient conditions for gauging a global quasi-symmetry.
References:
[1] Arnold, V. I.: Mathematical Methods of Classical Mechanics. Springer–Verlag, 1989. MR 0997295
[2] Barnich, G., Brandt, F., Henneaux, M.: Local BRST cohomology in gauge theories. Phys. Rep. 338 (2000), 439–569, arXiv:hep-th/0002245. DOI 10.1016/S0370-1573(00)00049-1 | MR 1792979 | Zbl 1097.81571
[3] Bering, K.: Putting an edge to the Poisson bracket. J. Math. Phys. 41 (2000), 7468–7500. DOI 10.1063/1.1286144 | MR 1788585 | Zbl 0984.70020
[4] Bogoliubov, N. N., Shirkov, D. V.: Introduction to the Theory of Quantized Fields. 3rd ed., John Wiley and Sons Inc., 1980. MR 0579493
[5] de Wit, B., Smith, J.: Field Theory in Particle Physics. vol. 1, North–Holland, 1986.
[6] Goldstein, H.: Classical Mechanics. Addison–Wesley Publishing, 1980, Second edition. MR 0575343 | Zbl 0491.70001
[7] Hill, E. L.: Hamilton’s principle and the conservation theorems of mathematical physics. Rev. Modern Phys. 23 (1951), 253–260. DOI 10.1103/RevModPhys.23.253 | MR 0044959 | Zbl 0044.38509
[8] Ibragimov, N. Kh.: Invariant variational problems and the conservation laws (remarks on E. Noether’s theorem). Theoret. Mat.h Phys. 1 (1969), 267–274. DOI 10.1007/BF01035741 | MR 0464998
[9] José, J. V., Saletan, E. J.: Classical Dynamics: A Contemporary Approach. Cambridge Univ. Press, 1998. MR 1640663
[10] Komorowski, J.: A modern version of the E. Noether’s theorems in the calculus of variations, Part I. Studia Math. 29 (1968), 261–273. MR 0225205
[11] Noether, E.: Invariante Variationsprobleme. Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Math.–Phys. Klasse (1918), 235—257, English translation: arXiv:physics/0503066.
[12] Olver, P. J.: Applications of Lie Groups to Differential Equations. 2nd ed., Springer–Verlag, 1993. MR 1240056 | Zbl 0785.58003
[13] Polchinski, J.: String Theory. vol. 1, Cambridge Univ. Press, 1998. Zbl 1006.81522
[14] Ramond, P.: Field Theory: A Modern Primer. Addison–Wesley, 1989. MR 1083767
[15] Sarlet, W., Cantrijn, F.: Generalizations of Noether’s theorem in classical mechanics. SIAM Rev. 23 (1981), 467–494. MR 0636081 | Zbl 0474.70014
[16] Trautman, A.: Noether equations and conservation laws. Commun. Math. Phys. 6 (1967), 248–261. MR 0220470 | Zbl 0172.27803
[17] http://en.wikipedia.org/wiki/Noether's_theorem</b> tp://en.wikipedia.org/wiki/noether's_theorem.
Partner of
EuDML logo