Previous |  Up |  Next

Article

Keywords:
fuzzy ultrametric; continuous extension operator; Hausdorff metric
Summary:
We consider the problem of simultaneous extension of fuzzy ultrametrics defined on closed subsets of a complete fuzzy ultrametric space. We construct an extension operator that preserves the operation of pointwise minimum of fuzzy ultrametrics with common domain and an operation which is an analogue of multiplication by a constant defined for fuzzy ultrametrics. We prove that the restriction of the extension operator onto the set of continuous, partial fuzzy ultrametrics is continuous with respect to the Hausdorff metric topology.
References:
[1] Banakh T.: $\rm AE(0)$–spaces and regular operators extending (averaging) pseudometrics. Bull. Polish Acad. Sci. Math. 42 (1994), no. 3, 197–206. MR 1811849
[2] Bessaga C.: On linear operators and functors extending pseudometrics. Fund. Math. 142 (1993), no. 2, 101-122. MR 1211761 | Zbl 0847.54033
[3] Beer G.: Topologies on Closed and Closed Convex Sets. Kluwer Academic, Dordrecht, 1993. MR 1269778 | Zbl 0792.54008
[4] George A., Veeramani P.: On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems 90 (1997), 365–368. MR 1477836 | Zbl 0917.54010
[5] Gregori V., Morillas S., Sapena A.: On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems 161 (2010), 2193–2205. MR 2652720 | Zbl 1201.54011
[6] de Groot J.: Non-archimedean metrics in topology. Proc. Amer. Math. Soc. 7 (1956), 948–953. DOI 10.1090/S0002-9939-1956-0080905-8 | MR 0080905 | Zbl 0072.40201
[7] Hausdorff F.: Erweiterung einer Homöomorphie. Fund. Math. 16 (1930), 353–360.
[8] Künzi H.P., Shapiro L.B.: On simultaneous extension of continuous partial functions. Proc. Amer. Math. Soc. 125 (1997), 1853–1859. DOI 10.1090/S0002-9939-97-04011-2 | MR 1415348
[9] Mihe\c t D.: Fuzzy $\psi$-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems 159 (2008), no. 6, 739–744. DOI 10.1016/j.fss.2007.07.006 | MR 2410532
[10] Narici L., Beckenstein E.: Topological vector spaces. Pure and Applied Mathematics, 95, Marcel Dekker, New York-Basel, 1985. MR 0812056 | Zbl 1219.46001
[11] Pikhurko O.: Extending metrics in compact pairs. Mat. Stud. 3 (1994), 103–106. MR 1692801 | Zbl 0927.54029
[12] Repovš D., Savchenko A., Zarichnyi M.: Fuzzy Prokhorov metric on the set of probability measures. Fuzzy Sets and Systems 175 (2011), 96–104. MR 2803416
[13] Savchenko A.: Extension of fuzzy metrics. Carpathian Mathematical Publications 2 (2010), no. 2, 111–115 (in Ukrainian). Zbl 1224.54020
[14] Savchenko A., Zarichnyi M.: Fuzzy ultrametrics on the set of probability measures. Topology 48 (2009), 130–136. DOI 10.1016/j.top.2009.11.011 | MR 2596207 | Zbl 1191.54008
[15] Stasyuk I., Tymchatyn E.D.: A continuous operator extending ultrametrics. Comment. Math. Univ. Carolin. 50 (2009), no. 1, 141–151. MR 2562811 | Zbl 1212.54091
[16] Stasyuk I., Tymchatyn E.D.: On continuous linear operators extending metrics. submitted to Proc. Amer. Math. Soc.
[17] Tymchatyn E.D., Zarichnyi M.: On simultaneous linear extensions of partial (pseudo) metrics. Proc. Amer. Math. Soc. 132 (2004), 2799–2807. DOI 10.1090/S0002-9939-04-07413-1 | MR 2054807 | Zbl 1050.54011
[18] Tymchatyn E.D., Zarichnyi M.: A note on operators extending partial ultrametrics. Comment. Math. Univ. Carolin. 46 (2005), no. 3, 515–524. MR 2174529 | Zbl 1121.54045
[19] Zarichnyi M.: Regular linear operators extending metrics: a short proof. Bull. Polish Acad. Sci. Math. 44 (1996), no. 3, 267–269. MR 1419399 | Zbl 0866.54017
Partner of
EuDML logo