Previous |  Up |  Next

Article

Keywords:
robustness; spring balance weighing design; total weight
Summary:
In this paper we develop the theory of spring balance weighing designs with non-positive correlated errors for that the lower bound of the variance of estimated total weight is attained.
References:
[1] Banerjee, K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics. Marcel Dekker Inc., New York 1975. MR 0458751 | Zbl 0334.62030
[2] Ceranka, B., Katulska, K.: Optimum singular spring balance weighing designs with non-homogeneity of the variances of errors for estimating the total weight. Austral. J. Statist. 28 (1986), 200–205. DOI 10.1111/j.1467-842X.1986.tb00599.x | MR 0860464 | Zbl 0657.62082
[3] Clatworthy, W. H.: Tables of two-associate-class partially balanced designs. NBS Appl. Math. 63 (1973). MR 0415952 | Zbl 0289.05017
[4] Dey, A., Gupta, S. C.: Singular weighing designs and the estimation of total weight. Comm. Statist. Theory Methods 7 (1977), 289–295. MR 0436489
[5] Katulska, K.: On the estimation of total weight in singular spring balance weighing designs under the covariance matrix of errors $\sigma ^2{\bf G}$. Austral. J. Statist. 31 (1989), 277–286. DOI 10.1111/j.1467-842X.1989.tb00397.x | MR 1039415 | Zbl 0707.62163
[6] Krzyśko, M., Skorzybut, M.: Dysciminant analysis of multivariate repeated measures data with Kronecker product structured covariance matrices. Statist. Papers 50 (2009), 817–835. DOI 10.1007/s00362-009-0259-z | MR 2551353
[7] Masaro, J., Wong, C. S.: Robustness of A-optimal designs. Linear Algebra Appl. 429 (2008), 1392–1408. DOI 10.1016/j.laa.2008.02.017 | MR 2444331 | Zbl 1145.62053
[8] Pukelsheim, F.: Optimal Design of Experiment. John Wiley and Sons, New York 1993. MR 1211416
[9] Raghavarao, D.: Constructions and Combinatorial Problems in designs of Experiments. John Wiley Inc., New York 1971. MR 0365935
[10] Raghavarao, D., Padgett, L. V.: Block Designs, Analysis, Combinatorics and Applications. Series of Applied Mathematics 17, Word Scientific Publishing Co. Pte. Ltd., 2005 MR 2187913 | Zbl 1102.62080
[11] Sinha, B. K.: Optimum spring balance weighing designs. In: Proc. All India Convention on Quality and Reliability. Indian Inst. Tech., Kharagpur 1972.
[12] Shah, K. R., Sinha, B. K.: Theory of Optimal Designs. Springer-Verlag, Berlin 1989. MR 1016151 | Zbl 0688.62043
Partner of
EuDML logo