[1] Benney, D. J.:
Some properties of long nonlinear waves. Stud. Appl. Math. 52 (1973), 45–50.
Zbl 0259.35011
[3] Dubrovin, B. A.:
Geometry of 2D topological field theories. Integrable Systems and Quantum Groups (Francaviglia, M., Greco, S., eds.), vol. 1620, Montecatini Terme, 1993, springer lecture notes in math. ed., 1996, pp. 120–348.
MR 1397274 |
Zbl 0841.58065
[4] Dubrovin, B. A.:
Flat pencils of metrics and Frobenius manifolds. Integrable systems and algebraic geometry, World Sci. Publ., River Edge, NJ, 1998, pp. 47–72.
MR 1672100 |
Zbl 0963.53054
[6] Dubrovin, B. A., Novikov, S. P.:
Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Uspekhi Mat. Nauk 44 (1989), 35–124, English translation in Russ. Math. Surveys 44 (1989), 35–124.
MR 1037010 |
Zbl 0712.58032
[7] Dubrovin, B.A.:
Differential geometry of strongly integrable systems of hydrodynamic type. Funct. Anal. Appl. 24 (4) (1990), 280–285, (English. Russian original), translation from Funkts. Anal. Prilozh. 24, No.4, 25-30 (1990).
DOI 10.1007/BF01077332 |
MR 1092800 |
Zbl 0850.76008
[10] Gibbons, J., Lorenzoni, P., Raimondo, A.:
Purely nonlocal Hamiltonian formalism for systems of hydrodynamic type. arXiv:0812.3317.
MR 2654091 |
Zbl 1197.53099
[14] Hertling, C.: Multiplication on the tangent bundle. arXiv:math/9910116.
[19] Mokhov, O. I.:
Nonlocal Hamiltonian operators of hydrodynamic type with flat metrics, integrable hierarchies, and associativity equations. Funct. Anal. Appl. 40 (2006), 11–23.
DOI 10.1007/s10688-006-0002-7 |
MR 2223246
[20] Mokhov, O. I.:
Frobenius manifolds as a special class of submanifolds in pseudo-Euclidean spaces. Geometry, Topology, and Mathematical Physics, vol. 224, Amer. Math. Soc. Transl. Ser. 2, 2008, pp. 213–246.
MR 2462363 |
Zbl 1155.53056
[21] Mokhov, O. I., Ferapontov, E. V.:
Nonlocal Hamiltonian operators of hydrodynamic type that are connected with metrics of constant curvature. Russ. Math. Surv. 45 (3) (1990), 218–219.
DOI 10.1070/RM1990v045n03ABEH002351 |
MR 1071942
[22] Pavlov, M. V.:
Integrability of Egorov systems of hydrodynamic type. Teoret. Mat. Fiz. 150 (2) (2007), 263–285, (Russian) translation in Theoret. and Math. Phys. 150 (2) (2007), 225–243.
MR 2325928
[23] Pavlov, M. V., Svinolupov, S. I., Sharipov, R. A.:
An invariant criterion for hydrodynamic integrability. Funktsional. Anal. i Prilozhen 30 (1) (1996), 18–29, 96, (Russian) translation in Funct. Anal. Appl. 30 (1) (1996), 15–22.
DOI 10.1007/BF02509552 |
MR 1387485
[27] Zakharov, V. E.:
Benney equations and quasiclassical approximation in the inverse problem. Funktional. Anal. i Prilozhen 14 (1980), 15–24.
MR 0575201