Previous |  Up |  Next

Article

Keywords:
F-manifolds; Frobenius manifolds; integrable systems; PDEs of hydrodynamic type
Summary:
We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of $F$-manifold with compatible connection generalizing a structure introduced by Manin.
References:
[1] Benney, D. J.: Some properties of long nonlinear waves. Stud. Appl. Math. 52 (1973), 45–50. Zbl 0259.35011
[2] Chang, Jen-Hsu: On the waterbag model of the dispersionless KP hierarchy (II). J. Phys. A: Math. Theor. 40 (2007), 12973–12785. DOI 10.1088/1751-8113/40/43/009 | MR 2385221 | Zbl 1127.37047
[3] Dubrovin, B. A.: Geometry of 2D topological field theories. Integrable Systems and Quantum Groups (Francaviglia, M., Greco, S., eds.), vol. 1620, Montecatini Terme, 1993, springer lecture notes in math. ed., 1996, pp. 120–348. MR 1397274 | Zbl 0841.58065
[4] Dubrovin, B. A.: Flat pencils of metrics and Frobenius manifolds. Integrable systems and algebraic geometry, World Sci. Publ., River Edge, NJ, 1998, pp. 47–72. MR 1672100 | Zbl 0963.53054
[5] Dubrovin, B. A., Liu, S. Q., Zhang, Y.: Frobenius manifolds and central invariants for the Drinfeld–Sokolov biHamiltonian structures. Adv. Math. 120 (3) (2008), 780–837. DOI 10.1016/j.aim.2008.06.009 | MR 2442053 | Zbl 1153.37032
[6] Dubrovin, B. A., Novikov, S. P.: Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Uspekhi Mat. Nauk 44 (1989), 35–124, English translation in Russ. Math. Surveys 44 (1989), 35–124. MR 1037010 | Zbl 0712.58032
[7] Dubrovin, B.A.: Differential geometry of strongly integrable systems of hydrodynamic type. Funct. Anal. Appl. 24 (4) (1990), 280–285, (English. Russian original), translation from Funkts. Anal. Prilozh. 24, No.4, 25-30 (1990). DOI 10.1007/BF01077332 | MR 1092800 | Zbl 0850.76008
[8] Ferapontov, E. V.: Differential geometry of nonlocal Hamiltonian operators of hydrodynamic type. Funct. Anal. Appl. 25 (3) (1991), 195–204. DOI 10.1007/BF01085489 | MR 1139873 | Zbl 0742.58018
[9] Ferguson, J. T., Strachan, I. A. B.: Logarithmic deformations of the rational superpotential/Landau-Ginzburg construction of solutions of the WDVV equations. Comm. Math. Phys. 280 (2008), 1–25. DOI 10.1007/s00220-008-0464-y | MR 2391189 | Zbl 1148.53067
[10] Gibbons, J., Lorenzoni, P., Raimondo, A.: Purely nonlocal Hamiltonian formalism for systems of hydrodynamic type. arXiv:0812.3317. MR 2654091 | Zbl 1197.53099
[11] Gibbons, J., Lorenzoni, P., Raimondo, A.: Hamiltonian structure of reductions of the Benney system. Comm. Math. Phys. 287 (2009), 291–322. DOI 10.1007/s00220-008-0686-z | MR 2480750
[12] Gibbons, J., Tsarev, S. P.: Reductions of the Benney equations. Phys. Lett. A 211 (1) (1996), 19–24. DOI 10.1016/0375-9601(95)00954-X | MR 1372470 | Zbl 1072.35588
[13] Gibbons, J., Tsarev, S. P.: Conformal maps and reductions of the Benney equations. Phys. Lett. A 258 (4–6) (1999), 263–271. DOI 10.1016/S0375-9601(99)00389-8 | MR 1710008 | Zbl 0936.35184
[14] Hertling, C.: Multiplication on the tangent bundle. arXiv:math/9910116.
[15] Hertling, C., Manin, Y.: Weak Frobenius manifolds. Internat. Math. Res. Notices 6 (1999), 277–286. DOI 10.1155/S1073792899000148 | MR 1680372 | Zbl 0960.58003
[16] Konopelchenko, B. G., Magri, F.: Coisotropic deformations of associative algebras and dispersionless integrable hierarchies. Comm. Math. Phys. 274 (2007), 627–658. DOI 10.1007/s00220-007-0295-2 | MR 2328906 | Zbl 1136.37038
[17] Lebedev, D., Manin, Y.: Conservation laws and Lax representation of Benney’s long wave equations. Phys. Lett. A 74 (1979), 154–156. DOI 10.1016/0375-9601(79)90756-4 | MR 0591318
[18] Manin, Y.: $F$-manifolds with flat structure and Dubrovin’s duality. Adv. Math. 198 (1) (2005), 5–26. DOI 10.1016/j.aim.2004.12.003 | MR 2183247 | Zbl 1085.14023
[19] Mokhov, O. I.: Nonlocal Hamiltonian operators of hydrodynamic type with flat metrics, integrable hierarchies, and associativity equations. Funct. Anal. Appl. 40 (2006), 11–23. DOI 10.1007/s10688-006-0002-7 | MR 2223246
[20] Mokhov, O. I.: Frobenius manifolds as a special class of submanifolds in pseudo-Euclidean spaces. Geometry, Topology, and Mathematical Physics, vol. 224, Amer. Math. Soc. Transl. Ser. 2, 2008, pp. 213–246. MR 2462363 | Zbl 1155.53056
[21] Mokhov, O. I., Ferapontov, E. V.: Nonlocal Hamiltonian operators of hydrodynamic type that are connected with metrics of constant curvature. Russ. Math. Surv. 45 (3) (1990), 218–219. DOI 10.1070/RM1990v045n03ABEH002351 | MR 1071942
[22] Pavlov, M. V.: Integrability of Egorov systems of hydrodynamic type. Teoret. Mat. Fiz. 150 (2) (2007), 263–285, (Russian) translation in Theoret. and Math. Phys. 150 (2) (2007), 225–243. MR 2325928
[23] Pavlov, M. V., Svinolupov, S. I., Sharipov, R. A.: An invariant criterion for hydrodynamic integrability. Funktsional. Anal. i Prilozhen 30 (1) (1996), 18–29, 96, (Russian) translation in Funct. Anal. Appl. 30 (1) (1996), 15–22. DOI 10.1007/BF02509552 | MR 1387485
[24] Pavlov, M. V., Tsarev, S. P.: Tri-Hamiltonian structures of Egorov systems of hydrodynamic type. Funktsional. Anal. i Prilozhen. 37 (1) (2003), 38–54, (Russian). DOI 10.1023/A:1022971910438 | MR 1988008 | Zbl 1019.37048
[25] Strachan, I. A. B.: Frobenius manifolds: natural submanifolds and induced bi-Hamiltonian structures. Differential Geom. Appl. 20 (1) (2004), 67–99. DOI 10.1016/j.difgeo.2003.10.001 | MR 2030167 | Zbl 1049.53060
[26] Tsarev, S. P.: The geometry of Hamiltonian systems of hydrodynamic type. The generalised hodograph transform. USSR Izv. 37 (1991), 397–419. DOI 10.1070/IM1991v037n02ABEH002069 | MR 1086085
[27] Zakharov, V. E.: Benney equations and quasiclassical approximation in the inverse problem. Funktional. Anal. i Prilozhen 14 (1980), 15–24. MR 0575201
Partner of
EuDML logo