Previous |  Up |  Next

Article

Keywords:
dynamic capillary pressure; two-phase flow in porous media; immiscible displacement in porous media; finite volume method
Summary:
In order to investigate effects of the dynamic capillary pressure-saturation relationship used in the modelling of a flow in porous media, a one-dimensional fully implicit numerical scheme is proposed. The numerical scheme is used to simulate an experimental procedure using a measured dataset for the sand and fluid properties. Results of simulations using different models for the dynamic effect term in capillary pressure-saturation relationship are presented and discussed.
References:
[1] Bastian, P.: Numerical Computation of Multiphase Flows in Porous Media. Habilitation Dissertation, Kiel University (1999).
[2] Bear, J., Verruijt, A.: Modeling Groundwater Flow and Pollution. D. Reidel, Dordrecht (1990).
[3] Brooks, R. H., Corey, A. T.: Hydraulic properties of porous media. Hydrology Paper 3 (1964).
[4] Fučík, R., Mikyška, J., Beneš, M., Illangasekare, T. H.: An improved semi-analytical solution for verification of numerical models of two-phase flow in porous media. Vadose Zone Journal 6 93-104 (2007). DOI 10.2136/vzj2006.0024
[5] Fučík, R., Mikyška, J., Beneš, M., Illangasekare, T. H.: Semianalytical solution for two-phase flow in porous media with a discontinuity. Vadose Zone Journal 7 1001-1007 (2008). DOI 10.2136/vzj2007.0155
[6] Gray, W. G., Hassanizadeh, S. M.: Paradoxes and realities in unsaturated flow theory. Water Resources Research 27 1847-1854 (1991). DOI 10.1029/91WR01259
[7] Gray, W. G., Hassanizadeh, S. M.: Unsaturated flow theory including interfacial phenomena. Water Resources Research 27 1855-1863 (1991). DOI 10.1029/91WR01260
[8] Hassanizadeh, S. M., Gray, W. G.: Thermodynamic basis of capillary pressure in porous media. Water Resources Research 29 (1993), 3389-3406. DOI 10.1029/93WR01495
[9] Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer, Berlin (1997).
[10] Helmig, R., Weiss, A., Wohlmuth, B. I.: Dynamic capillary effects in heterogeneous porous media. Comput. Geosci. 11 261-274 (2007). DOI 10.1007/s10596-007-9050-1 | MR 2344202 | Zbl 1123.76065
[11] Ippisch, O., Vogel, H.-J., Bastian, P.: Validity limits for the van Genuchten-Mualem model and implications for parameter estimation and numerical simulation. Advances in Water Resources 29 (2006), 1780-1789.
[12] Mikyška, J., Illangasekare, M. Beneš,T. H.: Numerical investigation of non-aqueous phase liquid behavior at heterogeneous sand layers using voda multiphase flow code. Journal of Porous Media 12 (2009), 685-694. DOI 10.1615/JPorMedia.v12.i7.60
[13] Sakaki, T., Illangasekare, D. M. O'Carroll,T. H.: Direct Laboratory Quantification of Dynamic Coefficient of a Field Soil for Drainage and Wetting Cycles. American Geophysical Union, Fall Meeting 2007, abstract\# H53F-1486, 2007.
[14] Stauffer, F.: Time dependence of the relations between capillary pressure, water content and conductivity during drainage of porous media. On Scale Effects in Porous Media, IAHR, Thessaloniki, Greece, 1978.
[15] Genuchten, M. T. van: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44 (1980), 892-898. DOI 10.2136/sssaj1980.03615995004400050002x
Partner of
EuDML logo