Article
Keywords:
Sturm-Liouville problem; minimal eigenvalue
Summary:
We consider the Sturm-Liouville problem with symmetric boundary conditions and an integral condition. We estimate the first eigenvalue $\lambda _1$ of this problem for different values of the parameters.
References:
[1] Egorov, Yu., Kondratiev, V.:
On Spectral Theory of Elliptic Operators. Birkhäuser, Basel (1996).
MR 1409364 |
Zbl 0855.35001
[2] Muryshkina, O. V.: On estimates for the first eigenvalue of the Sturm-Liouville problem with symmetric boundary conditions. Vestnik Molodyh Uchenyh. -- 3'2005. Series: Applied Mathematics and Mechanics. -- 1'2005 36-52.
[3] Vinokurov, V. A., Sadovnichii, V. A.:
On the range of variation of an eigenvalue when the potential is varied. Dokl. Math. 68 247-252 (2003), Translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 392 592-597 (2003).
MR 2082849 |
Zbl 1143.34325
[4] Ezhak, S. S.:
On the estimates for the minimum eigenvalue of the Sturm-Liouville problem with integral condition. English J. Math. Sci., New York 145 5205-5218 (2007), Translation from Sovrem. Mat. Prilozh. 36 56-69 (2005).
DOI 10.1007/s10958-007-0345-5 |
MR 2463726