Previous |  Up |  Next

Article

Keywords:
multivariate extreme value distribution; tail dependence; logistic model; mixture
Summary:
The Multivariate Extreme Value distributions have shown their usefulness in environmental studies, financial and insurance mathematics. The Logistic or Gumbel-Hougaard distribution is one of the oldest multivariate extreme value models and it has been extended to asymmetric models. In this paper we introduce generalized logistic multivariate distributions. Our tools are mixtures of copulas and stable mixing variables, extending approaches in Tawn [14], Joe and Hu [6] and Fougères et al. [3]. The parametric family of multivariate extreme value distributions considered presents a flexible dependence structure and we compute for it the multivariate tail dependence coefficients considered in Li [7].
References:
[1] Capéraà, P., Fougères, A. L., Genest, C.: Bivariate distributions with given extreme value attractor. J. Multivariate Anal. 72 (2000), 30–49. DOI 10.1006/jmva.1999.1845 | MR 1747422
[2] Cuadras, C. M., Augé, J.: A continuous general multivariate distribution and its properties. Comm. Statist. A - Theory Methods 10 (1981), 339–353. DOI 10.1080/03610928108828042 | MR 0612401
[3] Fougères, A.-L., Nolan, J. P., Rootzén, H.: Models for dependent extremes using scale mixtures. Scand. J. Statist. 36 (2009), 42–59. MR 2508330
[4] Heffernan, J. E., Tawn, J. A., Zhang, Z.: Asymptotically (in)dependent multivariate maxima of moving maxima processes. Extremes 10 (2007), 57–82. DOI 10.1007/s10687-007-0035-1 | MR 2397551
[5] Joe, H.: Multivariate Models and Dependence Concepts. Chapman & Hall, London 1997. MR 1462613
[6] Joe, H., Hu, T.: Multivariate distributions from mixtures of max-infinitely divisible distributions. J. Multivariate Anal. 57 (1996), 240–265. DOI 10.1006/jmva.1996.0032 | MR 1391171 | Zbl 0863.62047
[7] Li, H.: Orthant tail dependence of multivariate extreme value distributions. J. Multivariate Anal. 100 (2009), 243–256. DOI 10.1016/j.jmva.2008.04.007 | MR 2460490 | Zbl 1151.62041
[8] Marshall, A. W., Olkin, I.: Families of multivariate distributions. J. Amer. Statist. Assoc. 83 (1988), 834–841. DOI 10.1080/01621459.1988.10478671 | MR 0963813 | Zbl 0683.62029
[9] McNeil, A. J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, Princeton 2005. MR 2175089 | Zbl 1089.91037
[10] Morillas, P. M.: A method to obtain new copulas from a given one. Metrika 61 (2005), 169–184. DOI 10.1007/s001840400330 | MR 2159414 | Zbl 1079.62056
[11] Nelsen, R. B.: An Introduction to Copulas. Springer, New York 1999. MR 1653203 | Zbl 0909.62052
[12] Schmid, F., Schmidt, R.: Multivariate conditional versions of Spearman’s rho and related measures of tail dependence. J. Multivariate Anal. 98 (2007), 1123–1140. DOI 10.1016/j.jmva.2006.05.005 | MR 2326243 | Zbl 1116.62061
[13] Smith, R. L., Weissman, I.: Characterization and Estimation of the Multivariate Extremal Index. Technical Report, Univ. North Carolina 1996.
[14] Tawn, J.: Modelling multivariate extreme value distributions. Biometrika 77 (1990), 2, 245–253. DOI 10.1093/biomet/77.2.245 | Zbl 0716.62051
Partner of
EuDML logo