[2] K. L. Chung:
A Course in Probability Theory. Second edition. Harcourt Brace Jovanovich, New York 1974.
MR 0346858 |
Zbl 0345.60003
[3] D. J. Daley, D. Vere-Jones:
An Introduction to the Theory of Point Processes. Second edition. Vol I and II, Springer, New York 2003, 2008.
MR 0950166 |
Zbl 1026.60061
[4] S. David: Central Limit Theorems for Empirical Product Densities of Stationary Point Processes. Phd. Thesis, Augsburg Universität 2008.
[6] L. Heinrich:
Normal approximation for some mean-value estimates of absolutely regular tesselations. Math. Methods Statist. 3 (1994), 1-24.
MR 1272628
[7] L. Heinrich: Asymptotic goodness-of-fit tests for point processes based on scaled empirical K-functions. Submitted.
[11] J. Illian, A. Penttinen, H. Stoyan, D. Stoyan:
Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley and Sons, Chichester 2008.
MR 2384630 |
Zbl 1197.62135
[12] E. Jolivet:
Central limit theorem and convergence of empirical processes of stationary point processes. In: Point Processes and Queueing Problems (P. Bartfai and J. Tomko, eds.), North-Holland, New York 1980, pp. 117-161.
MR 0617406
[13] S. Mase:
Asymptotic properties of stereological estimators for stationary random sets. J. Appl. Probab. 19 (1982), 111-126.
DOI 10.2307/3213921 |
MR 0644424
[16] M. Prokešová, E. B. Vedel-Jensen: Asymptotic Palm likelihood theory for stationary point processes. Submitted.
[17] B. D. Ripley:
Statistical Inference for Spatial Processes. Cambridge University Press, Cambridge 1988.
MR 0971986 |
Zbl 0716.62100
[18] D. Stoyan, W. S. Kendall, J. Mecke:
Stochastic Geometry and its Applications. Second edition. J. Wiley & Sons, Chichester 1995.
MR 0895588 |
Zbl 0838.60002
[19] J. C. Taylor:
An Introduction to Measure and Probability. Springer, New York 1997.
MR 1420194
[20] L. Zhengyan, L. Chuanrong:
Limit Theory for Mixing Dependent Random Variables. Kluwer Academic Publishers, Dordrecht 1996.
MR 1486580 |
Zbl 0889.60001