[1] Barbero, F.:
Real Ashtekar variables for Lorentzian signature space-time. Phys. Rev. D51 1996 5507–5510
MR 1338108
[4] Fatibene, L., Ferraris, M., Francaviglia, M., Godina, M.:
A geometric definition of Lie derivative for Spinor Fields. I. Kolář (ed.)Proceedings of 6th International Conference on Differential Geometry and its Applications, August 28–September 1, 1995 MU University, Brno, Czech Republic 1996 549–557
MR 1406374 |
Zbl 0858.53035
[6] Fatibene, L., Francaviglia, M.:
Natural and Gauge Natural Formalism for Classical Field Theories. Kluwer Academic Publishers, Dordrecht 2003 xxii
MR 2039451 |
Zbl 1138.81303
[7] Fatibene, L., Francaviglia, M.:
Deformations of spin structures and gravity. Acta Physica Polonica B 29 (4) 1998 915–928
MR 1682316 |
Zbl 0988.83043
[10] Fatibene, L., McLenaghan, R.G., Smith, S.: Separation of variables for the Dirac equation on low dimensional spaces. Advances in general relativity and cosmology Pitagora, Bologna 2003 109–127
[12] Godina, M., Matteucci, P.:
The Lie derivative of spinor fields: theory and applications. Int. J. Geom. Methods Mod. Phys. 2 2005 159–188 math/0504366
DOI 10.1142/S0219887805000624 |
MR 2140175
[13] Holst, S.:
Barbero’s Hamiltonian Derived from a Generalized Hilbert-Palatini Action. Phys. Rev. D53 1996 5966–5969
MR 1388932
[15] Kolář, I., Michor, P.W., Slovák, J.:
Natural Operations in Differential Geometry. Springer-Verlag, N.Y. 1993
MR 1202431
[17] Kosmann, Y.:
Dérivées de Lie des spineurs. Comptes Rendus Acad. Sc. Paris, série A 262 1966 289–292
MR 0200837 |
Zbl 0136.18403
[18] Kosmann, Y.:
Dérivées de Lie des spineurs. Applications. Comptes Rendus Acad. Sc. Paris, série A 262 1966 394–397
MR 0200838 |
Zbl 0136.18403
[19] Kosmann, Y.:
Propriétés des dérivations de l’algèbre des tenseurs-spineurs. Comptes Rendus Acad. Sc. Paris, série A 264 1967 355–358
MR 0212712
[21] Obukhov, Y.N., Rubilar, G.F.:
Invariant conserved currents in gravity theories with local Lorentz and diffeomorphism symmetry. Phys. Rev. D 74 2006 064002 gr-qc/0608064
DOI 10.1103/PhysRevD.74.064002
[22] Ortin, T.:
A Note on Lie-Lorentz Derivatives. Classical and Quantum Gravity 19 2002 L143–L150 hep-th/0206159
MR 1921400 |
Zbl 1004.83037
[23] Sharipov, R.: A note on Kosmann-Lie derivatives of Weyl spinors. arXiv: 0801.0622
[24] Trautman, A.:
Invariance of Lagrangian Systems. Papers in honour of J. L. Synge Clarenden Press, Oxford 1972 85–100
MR 0503424 |
Zbl 0273.58004
[26] Vandyck, M.A.:
On the problem of space-time symmetries in the theory of supergravity, Part II. Gen. Rel. Grav. 20 1988 905–925
DOI 10.1007/BF00760090
[27] Yano, K.: The theory of Lie derivatives and its applications. North-Holland, Amsterdam 1955