[1] Balseiro, P., Marrero, J.C., de Diego, D. Martín, Padrón, E.:
A unified framework for mechanics: Hamilton-Jacobi equation and applications. Nonlinearity 23 2010 1887–1918
DOI 10.1088/0951-7715/23/8/006 |
MR 2669632
[4] Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.:
Nonholonomic systems with symmetry. Arch. Ration. Mech. Anal. 136 1996 21–99
DOI 10.1007/BF02199365 |
MR 1423003
[5] Cantrijn, F., de León, M., Marrero, J.C., de Diego, D. Martín:
Reduction of constrained systems with symmetry. J. Math. Phys. 40 1999 795–820
DOI 10.1063/1.532686 |
MR 1674283
[7] Cariñena, J.F., Rañada, M.F.:
Lagrangian systems with constraints: a geometric approach to the method of Lagrange multipliers. J. Phys. A: Math. Gen. 26 1993 1335–1351
DOI 10.1088/0305-4470/26/6/016 |
MR 1212006
[9] Chetaev, N.G.: On the Gauss principle. Izv. Kazan. Fiz.-Mat. Obsc. 6 1932–33 323–326 (in Russian)
[12] Cortés, J., de León, M., de Diego, D. Martín, Martínez, S.:
Geometric description of vakonomic and nonholonomic dynamics. Comparison of solutions. SIAM J. Control Optim. 41 2003 1389–1412
DOI 10.1137/S036301290036817X |
MR 1971955
[13] de León, M., de Diego, D.M.:
On the geometry of non-holonomic Lagrangian systems. J. Math. Phys. 37 1996 3389–3414
DOI 10.1063/1.531571 |
MR 1401231
[18] Helmholtz, H.: Ueber die physikalische Bedeutung des Prinzips der kleinsten Wirkung. J. für die reine u. angewandte Math. 100 1887 137–166
[21] Krupka, D.: Some geometric aspects of variational problems in fibered manifolds. Folia Fac. Sci. Nat. UJEP Brunensis 14 1973 1–65 Electronic transcription: arXiv:math-ph/0110005
[23] Krupka, D.:
Global variational theory in fibred spaces. D. Krupka, D. Saunders (eds.)Handbook of Global Analysis Elsevier 2008 773–836
MR 2389646 |
Zbl 1236.58026
[25] Krupka, D., Musilová, J.:
Hamilton extremals in higher order mechanics. Arch. Math. (Brno) 20 1984 21–30
MR 0785043
[26] Krupková, O.:
Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity. Arch. Math. (Brno) 22 1986 97–120
MR 0868124
[27] Krupková, O.:
Lepagean 2-forms in higher order Hamiltonian mechanics, II. Inverse Problem. Arch. Math. (Brno) 23 1987 155–170
MR 0930318
[28] Krupková, O.:
The Geometry of Ordinary Variational Equations. Lecture Notes in Mathematics, Vol. 1678. Springer Verlag, Berlin 1997
MR 1484970
[30] Krupková, O.:
On the geometry of non-holonomic mechanical systems. O. Kowalski, I. Kolář, D. Krupka, J. Slovák (eds.)Differential Geometry and Applications Proc. Conf. Brno 1998. Masaryk Univ., Brno 1999 533–546
MR 1708942
[31] Krupková, O.:
Higher-order mechanical systems with constraints. J. Math. Phys. 41 2000 5304–5324
MR 1770957
[32] Krupková, O.:
Differential systems in higher-order mechanics. D. Krupka (ed.)Proceedings of the Seminar on Differential Geometry Mathematical Publications, Vol. 2. Silesian Univ., Opava 2000 87–130
MR 1855571
[35] Krupková, O.:
The nonholonomic variational principle. J. Phys. A: Math. Theor. 42 2009 No. 185201
MR 2591195 |
Zbl 1198.70008
[36] Krupková, O.: Noether Theorem, 90 years on. Geometry and Physics, Proc. XVII International Fall Workshop on Geometry and Physics, Castro Urdiales, Spain, 2008 , AIP Conf. Proceedings, American Institute of Physics, New York 2009 159–170
[37] Krupková, O.:
Variational Equations on Manifolds. A.R. Baswell (ed.)Advances in Mathematics Research Vol. 9. Nova Science Publishers, New York 2009 201–274
MR 2599277
[40] Krupková, O., Prince, G.E.:
Second Order Ordinary Differential Equations in Jet Bundles and the Inverse Problem of the Calculus of Variations. D. Krupka, D. Saunders (eds.)Handbook of Global Analysis Elsevier 2008 841–908
MR 2389647 |
Zbl 1236.58027
[42] Krupková, O., Volný, P.: Differential equations with constraits in jet bundles: Lagrangian and Hamiltonian systems. Lobachevskii J. Math. 23 2006 95–150
[43] Massa, E., Pagani, E.:
A new look at classical mechanics of constrained systems. Ann. Inst. Henri Poincaré 66 1997 1–36
MR 1434114 |
Zbl 0878.70009
[45] Noether, E.: Invariante Variationsprobleme. Nachr. kgl. Ges. Wiss. Göttingen, Math. Phys. Kl. 1918 235–257
[46] Sarlet, W.:
A direct geometrical construction of the dynamics of non-holonomic Lagrangian systems. Extracta Mathematicae 11 1996 202–212
MR 1424757
[48] Saunders, D.J.:
The Geometry of Jet Bundles. London Math. Soc. Lecture Notes Series, Vol. 142. Cambridge Univ. Press, Cambridge 1989
MR 0989588 |
Zbl 0665.58002
[50] Swaczyna, M.: Several examples of nonholonomic mechanical systems. Communications in Mathematics, to appear
[51] Volný, P., Krupková, O.:
Hamilton equations for non-holonomic mechanical systems. O. Kowalski, D. Krupka, J. Slovák (eds.)Differential Geometry and Its Applications Proc. Conf., Opava, 2001. Mathematical Publications, Vol. 3. Silesian Univ., Opava, Czech Republic 2001 369–380
MR 1978791