[1] Busch, P., Lahti, P. J., Mittelstaedt, P.:
The Quantum Theory of Measurement. Lecture Notes in Phys., Springer-Verlag, Berlin 1991.
MR 1176754
[3] Barbieri, G., Weber, H.:
Measures on clans and on MV-algebras. In: Handbook of Measure Theory, vol. II. (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 911–945.
MR 1954632 |
Zbl 1019.28009
[4] Cignoli, R., D’Ottaviano, I. M. L., Mundici, D.:
Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht 2000.
MR 1786097
[5] Chang, C.:
Algebraic analysis of many-valued logic. Trans. Amer. Math. Soc. 89 (1959), 74–80.
MR 0094302
[8] Dvurečenskij, A., Pulmannová, S.:
New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht 2000.
MR 1861369
[9] Foulis, D. J., Bennett, M. K.:
Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346.
MR 1304942
[12] Goodearl, K. R.:
Partially ordered abelian groups with interpolation. Mat. Surveys Monographs 20, AMS Providence, 1986.
MR 0845783 |
Zbl 0589.06008
[13] Holevo, A. S.:
An analogue of the theory of statistical decisions in noncommutative probability theory. Trans. Mosc. Math. Soc. 26 (1972), 133–147.
MR 0365809
[14] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. Busefal 80 (1999), 24–29.
[18] Kôpka, F., Chovanec, F.:
D-posets. Math. Slovaca 44 (1994), 21–34.
MR 1290269
[22] Pták, P., Pulmannová, S.:
Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht 1991.
MR 1176314
[23] Pulmannová, S.: A spectral theorem for sigma-MV algebas. Kybernetika 41 (2005), 361–374.
[25] Pulmannová, S.:
Spectral resolutions for $\sigma $-complete lattice effect algebras. Math. Slovaca 56 (2006), 555–571.
MR 2293587 |
Zbl 1141.81007
[26] Pulmannová, S.:
Sharp and unsharp observables on $\sigma $-MV algebras—A comparison with the Hilbert space approach. Fuzzy Sets and Systems 159 (2008), 3065–3077.
MR 2457564 |
Zbl 1174.06013
[27] Riečan, B., Neubrunn, T.:
Integral, Measure and Ordering. Kluwer, Dordrecht – Ister Science, Bratislava 1997.
MR 1489521
[29] Štepán, J.: Probability Theory. (Teorie pravděpodobnosti. (In Czech.) Academia, Praha 1987.
[30] Strasser, H.:
Mathematical Theory of Statistics. W. De Gruyter, Berlin – New York 1985.
MR 0812467 |
Zbl 0594.62017