[2] Abidi, J.: Analycité, principe du maximum et fonctions plurisousharmoniques (à paraitre).
[3] Carleson, L.:
Selected Problems on Exceptional Sets. Van Nostrand, Princeton, N.J., 1967. (Reprint: Wadswarth, Belmont, Cal., 1983).
MR 0225986 |
Zbl 0505.00034
[8] Gunning, R. C., Rossi, H.:
Analytic Functions of Several Complex Variables. Prentice-Hall, Englewood Cliffs (1965).
MR 0180696 |
Zbl 0141.08601
[11] Hayman, W. K., Kennedy, P. B.:
Subharmonic Functions. Academic Press (1976).
Zbl 0323.32013
[12] Henkin, G. M., Leiterer, J.:
Theory of Functions on Complex Manifolds. Birkhäuser, Boston, Mass. (1984).
MR 0774049 |
Zbl 0726.32001
[13] Hervé, M.:
Les fonctions analytiques. Presses Universitaires de France (1982).
MR 0696576
[14] Hörmander, L.:
An Introduction to Complex Analysis in Several Variables. Van Nostrand, Princeton, N.J. (1966).
MR 0203075
[15] Hyvönen, J., Rühentaus, J.:
On the extension in the Hardy classes and in the Nevanlinna class. Bull. Soc. Math. France 112 (1984), 469-480.
DOI 10.24033/bsmf.2017 |
MR 0802536
[18] Krantz, S. G.:
Lipschitz spaces, smoothness of functions, and approximation theory. Expo. Math. 3 (1983), 193-260.
MR 0782608 |
Zbl 0518.46018
[19] Lelong, P.:
Fonctions plurisousharmoniques et formes différentielles positives. Gordon and Breach, New York (1969).
MR 0243112
[20] O'Farrell, A. G.:
The 1-reduction for removable singularities, and the negative Hölder spaces. Pro. R. Ir. Acad. A 88 (1988), 133-151.
MR 0986220 |
Zbl 0651.46041
[21] Poletsky, E.:
The minimum principle. Indiana Univ. Math. J. 51 (2003), 269-304.
MR 1909290
[22] Range, R. M.:
Holomorphic Functions and Integral Representations in Several Complex Variables. Springer, Berlin (1986).
MR 0847923 |
Zbl 0591.32002
[23] Ransford, T.:
Potential Theory in the Complex Plane. Cambridge University Press (1995).
MR 1334766 |
Zbl 0828.31001
[25] Ronkin, L. I.:
Introduction to the theory of entire functions of several variables. Amer. Math. Soc., Providence, RI (1974).
MR 0346175 |
Zbl 0286.32004
[27] Rudin, W.:
Function Theory in the Unit Ball of $\mathbb{C}^n$. Springer, New York (1980).
MR 0601594
[31] Vladimirov, V. S.:
Les fonctions de plusieurs variables complexe (et leur application à la théorie quantique des champs). Dunod, Paris (1967).
MR 0218608