Previous |  Up |  Next

Article

Keywords:
oscillation; non-oscillation; second order difference equation; third order difference equation; generalized zero
Summary:
In the paper, conditions are obtained, in terms of coefficient functions, which are necessary as well as sufficient for non-oscillation/oscillation of all solutions of self-adjoint linear homogeneous equations of the form \[ \Delta (p_{n-1}\Delta y_{n-1}) + q y_{n} =0 , \quad n\geq 1, \] where $q$ is a constant. Sufficient conditions, in terms of coefficient functions, are obtained for non-oscillation of all solutions of nonlinear non-homogeneous equations of the type \[ \Delta (p_{n-1}\Delta y_{n-1}) + q_{n}g( y_{n}) = f_{n-1}, \quad n\geq 1, \] where, unlike earlier works, $f_{n}\geq 0$ or $\leq 0$ (but $\not \equiv 0)$ for large $n$. Further, these results are used to obtain sufficient conditions for non-oscillation of all solutions of forced linear third order difference equations of the form \[ y_{n+2}+ a_{n}y_{n+1}+ b_{n}y_{n}+ c_{n}y_{n-1}= g_{n-1}, \quad n\geq 1. \]
References:
[1] Chen, S.: Disconjugacy, disfocality and oscillation of second order difference equations. J. Diff. Eqs. 107 (1994), 383-394. DOI 10.1006/jdeq.1994.1018 | MR 1264528 | Zbl 0791.39001
[2] Elaydi, S. N.: An Introduction to Difference Equations. Springer, New York (2005). MR 2128146 | Zbl 1071.39001
[3] Hooker, J. W., Patula, W. T.: Riccati type transformations for second order linear difference equations. J. Math. Anal. Appl. 82 (1981), 451-462. DOI 10.1016/0022-247X(81)90208-0 | MR 0629769 | Zbl 0471.39007
[4] Hooker, J. W., Kwong, M. K., Patula, W. T.: Oscillatory second order linear difference equations and Riccati equations. SIAM J. Math. Anal. 18 (1987), 54-63. DOI 10.1137/0518004 | MR 0871820 | Zbl 0619.39005
[5] Kelley, W. G., Peterson, A. C.: Difference Equations: An Introduction with Applications. Harcourt/Academic Press, San Diego (2001). MR 1765695 | Zbl 0970.39001
[6] Parhi, N.: On disconjugacy and conjugacy of second order linear difference equations. J. Indian Math. Soc. 68 (2001), 221-232. MR 1929838 | Zbl 1141.39300
[7] Parhi, N.: Oscillation of forced nonlinear second order self-adjoint difference equations. Indian J. Pure Appl. Math. 34 (2003), 1611-1624. MR 2020679 | Zbl 1044.39010
[8] Parhi, N., Panda, A.: Oscillation of solutions of forced nonlinear second order difference equations. Proc. Eighth Ramanujan Symposium on Recent Developments in Nonlinear Systems R. Sahadevan, M. Lakshmanan Narosa Pub. House, New Delhi (2002), 221-238. MR 2010625 | Zbl 1056.39010
[9] Parhi, N., Panda, A.: Oscillatory and non-oscillatory behaviour of solutions of difference equations of the third order. Math. Bohem. 133 (2008), 99-112. MR 2400154
[10] Parhi, N., Tripathy, A. K.: Oscillatory behaviour of second order difference equations. Commun. Appl. Nonlin. Anal. 6 (1999), 79-100. MR 1665966
[11] Parhi, N., Tripathy, A. K.: On oscillatory third-order difference equations. J. Difference Eq. Appl. 6 (2000), 53-74. DOI 10.1080/10236190008808213 | MR 1752155 | Zbl 0963.39009
[12] Parhi, N., Tripathy, A. K.: On the behaviour of solutions of a class of third order difference equations. J. Difference Eq. Appl. 8 (2002), 415-426. DOI 10.1080/10236190290017423 | MR 1897066 | Zbl 1037.39001
[13] Patula, W.: Growth and oscillation properties of second order linear difference equations. SIAM J. Math. Anal. 10 (1979), 55-61. DOI 10.1137/0510006 | MR 0516749 | Zbl 0397.39001
[14] Patula, W.: Growth, oscillation and comparison theorems for second order difference equations. SIAM J. Math. Anal. 10 (1979), 1272-1279. DOI 10.1137/0510114 | MR 0547812
Partner of
EuDML logo