Previous |  Up |  Next

Article

Keywords:
Sobolev estimate; $\bar \partial $ and $\bar \partial $-Neumann operator; $q$-pseudoconvex domains; Lipschitz domains
Summary:
On a bounded $q$-pseudoconvex domain $\Omega $ in $\mathbb {C}^{n}$ with a Lipschitz boundary, we prove that the $\bar {\partial }$-Neumann operator $N$ satisfies a subelliptic $(1/2)$-estimate on $\Omega $ and $N$ can be extended as a bounded operator from Sobolev $(-1/2)$-spaces to Sobolev $(1/2)$-spaces.
References:
[1] Abdelkader, O., Saber, S.: Estimates for the $\bar{\partial}$-Neumann operator on strictly pseudo-convex domain with Lipschitz boundary. J. Inequal. Pure Appl. Math. 5 10 (2004). MR 2084879
[2] Abdelkader, O., Saber, S.: The $\bar{\partial}$-Neumann operator on a strictly pseudo-convex domain with piecewise smooth boundary. Math. Slovaca 55 (2005), 317-328. MR 2181009
[3] Ahn, H., Dieu, N. Q.: The Donnelly-Fefferman Theorem on $q$-pseudoconvex domains. Osaka J. Math. 46 (2009), 599-610. MR 2583320 | Zbl 1214.32015
[4] Boas, H. P., Straube, E. J.: Global regularity of the $\bar{\partial}$-Neumann problem: A Survey of the $L^{2}$-Sobolev Theory, Several Complex Variables. MSRI Publications 37 (1999), 79-111. MR 1748601
[5] Boas, H. P., Straube, E. J.: Sobolev estimates for the $\bar{\partial}$-Neumann operator on domains in $\Bbb{C}^{n}$ admitting a defining function that is plurisubharmonic on the boundary. Math. Z. 206 (1991), 81-88. DOI 10.1007/BF02571327 | MR 1086815
[6] Bonami, A., Charpentier, P.: Boundary values for the canonical solution to $\bar{\partial}$-equation and $W^{1/2}$ estimates. Preprint, Bordeaux (1990). MR 1055987
[7] Catlin, D.: Subelliptic estimates for the $\bar{\partial}$-Neumann problem on pseudoconvex domains. Annals Math. 126 (1987), 131-191. DOI 10.2307/1971347 | MR 0898054 | Zbl 0627.32013
[8] Chen, S. C., Shaw, M. C.: Partial differential equations in several complex variables. AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society, Providence, RI (2001). MR 1800297 | Zbl 0963.32001
[9] Ehsani, D.: Solution of the d-bar-Neumann problem on a bi-disc. Math. Res. Letters 10 (2003), 523-533. DOI 10.4310/MRL.2003.v10.n4.a11 | MR 1995791
[10] Ehsani, D.: Solution of the d-bar-Neumann problem on a non-smooth domain. Indiana Univ. Math. J. 52 (2003), 629-666. DOI 10.1512/iumj.2003.52.2261 | MR 1986891
[11] Engliš, M.: Pseudolocal estimates for $\bar\partial$ on general pseudoconvex domains. Indiana Univ. Math. J. 50 (2001), 1593-1607. DOI 10.1512/iumj.2001.50.2085 | MR 1889072
[12] Evans, L. E., Gariepy, R. F.: Measure theory and fine properties of functions. Stud. Adv. Math., CRC, Boca Raton (1992). MR 1158660 | Zbl 0804.28001
[13] Folland, G. B., Kohn, J. J.: The Neumann problem for the Cauchy-Riemann complex. Ann. Math. Studies {\it 75}, Princeton University Press, New York, 1972. MR 0461588 | Zbl 0247.35093
[14] Grisvard, P.: Elliptic problems in nonsmooth domains. Monogr. Stud. Math. Pitman, Boston 24 (1985). MR 0775683 | Zbl 0695.35060
[15] Henkin, G., Iordan, A., Kohn, J. J.: Estimations sous-elliptiques pour le problème $\bar{\partial}$-Neumann dans un domaine strictement pseudoconvexe à frontière lisse par morceaux. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 17-22. MR 1401622
[16] Ho, L.-H.: $\bar\partial$-problem on weakly $q$-convex domains. Math. Ann. 290 (1991), 3-18. DOI 10.1007/BF01459235 | MR 1107660 | Zbl 0714.32006
[17] Hörmander, L.: $L^{2}$-estimates and existence theorems for the $\bar{\partial}$-operator. Acta Math. 113 (1965), 89-152. DOI 10.1007/BF02391775 | MR 0179443
[18] Kohn, J. J.: Global regularity for $\bar{\partial}$ on weakly pseudo-convex manifolds. Trans. Amer. Math. Soc. 181 (1973), 273-292. MR 0344703 | Zbl 0276.35071
[19] Kohn, J. J.: Harmonic integrals on strictly pseudoconvex manifolds I. Ann. Math. 78 (1963), 112-148. DOI 10.2307/1970506 | MR 0153030
[20] Kohn, J. J.: Harmonic integrals on strictly pseudoconvex manifolds II. Ann. Math. 79 (1964), 450-472. DOI 10.2307/1970404 | MR 0208200
[21] Michel, J., Shaw, M.: Subelliptic estimates for the $\bar {\partial}$-Neumann operator on piecewise smooth strictly pseudoconvex domains. Duke Math. J. 93 (1998), 115-128. DOI 10.1215/S0012-7094-98-09304-8 | MR 1620087
[22] Michel, J., Shaw, M.: The $\bar {\partial}$-Neumann operator on Lipschitz pseudoconvex domains with plurisubharmonic defining functions. Duke Math. J. 108 (2001), 421-447. DOI 10.1215/S0012-7094-01-10832-6 | MR 1838658
[23] Stein, E. M.: Singular integrals and differentiability properties of functions. Princeton, Princeton Univ. Press Vol. 30 (1970). MR 0290095 | Zbl 0207.13501
[24] Straube, E.: Plurisubharmonic functions and subellipticity of the $\bar{\partial}$-Neumann problem on nonsmooth domains. Math. Res. Lett. 4 (1997), 459-467. DOI 10.4310/MRL.1997.v4.n4.a2 | MR 1470417
[25] Zampieri, G.: $q$-pseudoconvexity and regularity at the boundary for solutions of the $\bar\partial$-problem. Compositio Math. 121 (2000), 155-162. DOI 10.1023/A:1001811318865 | MR 1757879
Partner of
EuDML logo