[1] Adimy, M., Ezzinbi, K.:
A class of linear partial neutral functionaldifferential equations with nondense domain. J. Differ. Equations 147 (1998), 285-332.
DOI 10.1006/jdeq.1998.3446 |
MR 1633941
[3] Balachandran, K., Sakthivel, R.:
Existence of solutions of neutral functional integrodifferential equation in Banach spaces. Proc. Indian Acad. Sci., Math. Sci. 109 (1999), 325-332.
DOI 10.1007/BF02843536 |
MR 1709339
[5] Balasubramaniam, P., Park, J. Y., Kumar, A. V. A.:
Existence of solutions for semilinear neutral stochastic functional differential equations with nonlocal conditions. Nonlinear Anal., Theory Methods Appl. 71 (2009), 1049-1058.
DOI 10.1016/j.na.2008.11.032 |
MR 2527524 |
Zbl 1171.34054
[7] Benchohra, M., Henderson, J., Ntouyas, S. K.:
Existence results for impulsive multivalued semilinear neutral functional differential inclusions in Banach spaces. J. Math. Anal. Appl. 263 (2001), 763-780.
DOI 10.1006/jmaa.2001.7663 |
MR 1866239 |
Zbl 0998.34064
[9] Chang, Y. V., Anguraj, A., Karthikeyan, K.:
Existence for impulsive neutral integrodifferential inclusions with nonlocal initial conditions via fractional operators. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 4377-4386.
DOI 10.1016/j.na.2009.02.121 |
MR 2548667 |
Zbl 1178.34071
[10] Clément, Ph., Nohel, J. A.:
Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels. SIAM J. Math. Anal. 12 (1981), 514-535.
DOI 10.1137/0512045 |
MR 0617711
[15] Henríquez, H. R., Pierri, M., Táboas, P.:
Existence of $S$-asymptotically $\omega$-periodic solutions for abstract neutral equations. Bull. Aust. Math. Soc. 78 (2008), 365-382.
DOI 10.1017/S0004972708000713 |
MR 2472273
[17] Hernández, E., O'Regan, D.:
$C^{\alpha}$-Hölder classical solutions for non-autonomous neutral differential equations. Discrete Contin. Dyn. Syst. 29 (2011), 241-260.
DOI 10.3934/dcds.2011.29.241 |
MR 2725289
[18] Hernández, E., O'Regan, D.: Existence of solutions for abstract non-autonomous neutral differential equations. Can. Math. Bull Accepted.
[19] Hernández, E., Balachandran, K.:
Existence results for abstract degenerate neutral functional differential equations. Bull. Aust. Math. Soc. 81 (2010), 329-342.
DOI 10.1017/S000497270900104X |
MR 2609114
[20] Hernández, E., Henríquez, H. R.:
Existence results for partial neutral functional integro-differential equation with unbounded delay. J. Math. Anal. Appl. 221 (1998), 452-475.
DOI 10.1006/jmaa.1997.5875 |
MR 1621730
[22] Hernández, E., Henríquez, H. R.:
Existence of periodic solutions of partial neutral functional differential equation with unbounded delay. J. Math. Anal. Appl. 221 (1998), 499-522.
DOI 10.1006/jmaa.1997.5899 |
MR 1621738
[23] Hino, Y., Murakami, S., Naito, T.:
Functional-Differential Equations With Infinite Delay. Lecture Notes in Mathematics, 1473. Springer Berlin (1991).
MR 1122588
[24] Lunardi, A.:
Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Basel (1995).
MR 1329547
[29] Ren, Y., Chen, L.:
A note on the neutral stochastic functional differential equation with infinite delay and Poisson jumps in an abstract space. J. Math. Phys. 50 (2009), 082704-082704-8.
DOI 10.1063/1.3202822 |
MR 2554419