Previous |  Up |  Next

Article

Keywords:
compact space; KC space; SC space; minimal KC space; minimal SC space; KC-closed space; SC-closed space; sequentially compact space; finite derived set property; wD property
Summary:
A topological space is KC when every compact set is closed and SC when every convergent sequence together with its limit is closed. We present a complete description of KC-closed, SC-closed and SC minimal spaces. We also discuss the behaviour of the finite derived set property in these classes.
References:
[1] Alas O.T., Wilson R.G.: Minimal properties between $T_1$ and $T_2$. Houston J. Math. 32 (2006), no. 2, 493–504. MR 2219327 | Zbl 1100.54018
[2] Alas O.T., Wilson R.G.: When is a compact space sequentially compact?. Topology Proc. 29 (2005), no. 2, 327–335. MR 2244478 | Zbl 1126.54010
[3] Alas O.T., Wilson R.G.: Spaces in which compact subsets are closed and the lattice of $T_1$ topologies on a set. Comment. Math. Univ. Carolin. 43 (2002), no. 4, 641–652. MR 2045786 | Zbl 1090.54015
[4] Alas O.T., Tkachenko M.G., Tkachuk V., Wilson R.G.: The FDS-property and the spaces in which compact sets are closed. Sci. Math. Jpn. 61 (2005), no. 3, 473–480. MR 2140109
[5] Balcar B., Pelant J., Simon P.: The space of ultrafilters on $N$ covered by nowhere dense sets. Fund. Math. 110 (1980), no. 1, 11–24. MR 0600576 | Zbl 0568.54004
[6] Bella A.: Remarks on the finite derived set property. Appl. Gen. Topol. 6 (2005), no. 1, 101–106. MR 2153430 | Zbl 1074.54002
[7] Baldovino C., Costantini C.: On some questions about $KC$ and related spaces. Topology Appl. 156 (2009), no. 17, 2692–2703. DOI 10.1016/j.topol.2009.07.010 | MR 2556028 | Zbl 1183.54012
[8] Bella A., Costantini C.: Minimal $KC$ spaces are compact. Topology Appl. 155 (2008), no. 13, 1426–1429. DOI 10.1016/j.topol.2008.04.005 | MR 2427414 | Zbl 1145.54014
[9] Bella A., Nyikos P.J.: Sequential compactness vs. countable compactness. Colloq. Math. 120 (2010), no. 2, 165–189. DOI 10.4064/cm120-2-1 | MR 2672268
[10] van Douwen E.K.: The integers and topology. in Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan, editors, North-Holland, Amsterdam, 1984, Chapter 3, pp. 111–167. MR 0776622 | Zbl 0561.54004
[11] Gryzlov A.A.: Two theorems on the cardinality of topological spaces. Dokl. Akad. Nauk SSSR 251 (1980), no. 4, 780–783; Soviet Math. Dokl. 21 (1980), no. 2, 506–509. MR 0568530 | Zbl 0449.54005
[12] Shakhmatov D., Tkachenko M.G., Wilson R.G.: Transversal and $T_1$-independent topologies. Houston J. Math. 30 (2004), no. 2, 421–433.
[13] Vaughan J.E.: Small uncountable cardinals and topology. in Open Problems in Topology, J. van Mill and G.M. Reed, editors, North-Holland, Amsterdam, 1990, pp. 195–218. MR 1078647
Partner of
EuDML logo