[1] Apel, T.:
Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics. B. G. Teubner Leipzig (1999).
MR 1716824
[3] Brandts, J., Korotov, S., Křížek, M.:
On the equivalence of ball conditions for simplicial finite elements in ${\Bbb R}^d$. Appl. Math. Lett. 22 (2009), 1210-1212.
DOI 10.1016/j.aml.2009.01.031 |
MR 2532540
[5] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problems. North-Holland Amsterdam (1978).
MR 0520174 |
Zbl 0383.65058
[8] Lin, J., Lin, Q.:
Global superconvergence of the mixed finite element methods for 2-D Maxwell equations. J. Comput. Math. 21 (2003), 637-646.
MR 1999974 |
Zbl 1032.65101
[10] Schewchuk, J. R.:
What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures. Preprint Univ. of California at Berkeley (2002), 1-66.
MR 3190484
[11] Ženíšek, A.:
The convergence of the finite element method for boundary value problems of a system of elliptic equations. Apl. Mat. 14 (1969), 355-377 Czech.
MR 0245978