Previous |  Up |  Next

Article

Keywords:
linear finite element; mesh regularity; minimum angle condition; convergence; higher-dimensional problems; triangulations
Summary:
The famous Zlámal's minimum angle condition has been widely used for construction of a regular family of triangulations (containing nondegenerating triangles) as well as in convergence proofs for the finite element method in $2d$. In this paper we present and discuss its generalization to simplicial partitions in any space dimension.
References:
[1] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics. B. G. Teubner Leipzig (1999). MR 1716824
[2] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55 (2008), 2227-2233. DOI 10.1016/j.camwa.2007.11.010 | MR 2413688 | Zbl 1142.65443
[3] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of ball conditions for simplicial finite elements in ${\Bbb R}^d$. Appl. Math. Lett. 22 (2009), 1210-1212. DOI 10.1016/j.aml.2009.01.031 | MR 2532540
[4] Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003), 489-505. DOI 10.1093/imanum/23.3.489 | MR 1987941 | Zbl 1042.65081
[5] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. North-Holland Amsterdam (1978). MR 0520174 | Zbl 0383.65058
[6] Eriksson, F.: The law of sines for tetrahedra and $n$-simplices. Geom. Dedicata 7 (1978), 71-80. DOI 10.1007/BF00181352 | MR 0474009 | Zbl 0375.50008
[7] Hannukainen, A., Korotov, S., Křížek, M.: On global and local mesh refinements by a generalized conforming bisection algorithm. J. Comput. Appl. Math. 235 (2010), 419-436. DOI 10.1016/j.cam.2010.05.046 | MR 2677699 | Zbl 1207.65145
[8] Lin, J., Lin, Q.: Global superconvergence of the mixed finite element methods for 2-D Maxwell equations. J. Comput. Math. 21 (2003), 637-646. MR 1999974 | Zbl 1032.65101
[9] Rektorys, K.: Survey of Applicable Mathematics, Vol. 1. Kluwer Academic Publishers Dordrecht (1994). DOI 10.1007/978-94-015-8308-4
[10] Schewchuk, J. R.: What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures. Preprint Univ. of California at Berkeley (2002), 1-66. MR 3190484
[11] Ženíšek, A.: The convergence of the finite element method for boundary value problems of a system of elliptic equations. Apl. Mat. 14 (1969), 355-377 Czech. MR 0245978
[12] Zlámal, M.: On the finite element method. Numer. Math. 12 (1968), 394-409. DOI 10.1007/BF02161362 | MR 0243753
Partner of
EuDML logo