Previous |  Up |  Next

Article

Title: On solvability sets of boundary value problems for linear functional differential equations (English)
Author: Bravyi, Eugene
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 2
Year: 2011
Pages: 145-154
Summary lang: English
.
Category: math
.
Summary: Consider boundary value problems for a functional differential equation $$\begin {cases} x^{(n)}(t) =(T^+x)(t)-(T^-x)(t)+f(t),&t\in [a,b],\\ l x=c, \end {cases} $$ where $T^{+},T^{-}\colon \bold C[a,b]\to \bold L[a,b]$ are positive linear operators; $l\colon \bold {AC}^{n-1}[a,b]\to \mathbb {R}^n$ is a linear bounded vector-functional, $f\in \bold L[a,b]$, $c\in \mathbb {R}^n$, $n\ge 2$. \endgraf Let the solvability set be the set of all points $({\mathcal T}^+,{\mathcal T}^-)\in \mathbb {R}_2^+$ such that for all operators $T^{+}$, $T^{-}$ with $\|T^{\pm }\|_{\bold C\to \bold L}={\mathcal T}^{\pm }$ the problems have a unique solution for every $f$ and $c$. A method of finding the solvability sets are proposed. Some new properties of these sets are obtained in various cases. We continue the investigations of the solvability sets started in R. Hakl, A. Lomtatidze, J. Šremr: Some boundary value problems for first order scalar functional differential equations. Folia Mathematica 10, Brno, 2002. (English)
Keyword: functional differential equation
Keyword: boundary value problem
Keyword: periodic problem
MSC: 34K06
MSC: 34K10
MSC: 34K13
idZBL: Zbl 1224.34208
idMR: MR2856131
DOI: 10.21136/MB.2011.141577
.
Date available: 2011-06-07T11:28:10Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141577
.
Reference: [1] Azbelev, N. V., Maksimov, V. P., Rahmatullina, L. F.: Introduction to the Theory of Functional Differential Equations.Nauka, Moskva (1991), Russian. MR 1144998
Reference: [2] Lomtatidze, A., Mukhigulashvili, S.: On periodic solutions of second order functional differential equations.Mem. Differ. Equ. Math. Phys. 5 (1995), 125-126. Zbl 0866.34054
Reference: [3] Lomtatidze, A., Mukhigulashvili, S.: On a two-point boundary value problem for second order functional differential equations. II.Mem. Differ. Equ. Math. Phys. 10 (1997), 150-152. Zbl 0939.34511
Reference: [4] Lomtatidze, A., Mukhigulashvili, S.: Some two-point boundary value problems for second-order functional-differential equations.Folia Facult. Scien. Natur. Univ. Masar. Brunensis, Brno (2000). Zbl 0994.34052, MR 1846770
Reference: [5] Hakl, R., Lomtatidze, A., Šremr, J.: Some boundary value problems for first order scalar functional differential equations.Folia Facult. Scien. Natur. Univ. Masar. Brunensis, Brno (2002). Zbl 1048.34004, MR 2088497
Reference: [6] Hakl, R., Lomtatidze, A., Půža, B.: On periodic solutions of first order nonlinear functional differential equations of non-Volterra's type.Mem. Differ. Equ. Math. Phys. 24 (2001), 83-105. Zbl 1011.34061, MR 1875885
Reference: [7] Lasota, A., Opial, Z.: Sur les solutions periodiques des equations differentielles ordinaires.Ann. Pol. Math. 16 (1964), 69-94. Zbl 0142.35303, MR 0170072, 10.4064/ap-16-1-69-94
Reference: [8] Hakl, R., Lomtatidze, A., Půža, B.: New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations.Math. Bohem. 127 (2002), 509-524. Zbl 1017.34065, MR 1942637
Reference: [9] Mukhigulashvili, S. V.: On the unique solvability of the Dirichlet problem for a second-order linear functional-differential equation.Differ. Equ. 40 (2004), 515-523. Zbl 1080.34050, MR 2153646, 10.1023/B:DIEQ.0000035789.25629.86
Reference: [10] Mukhigulashvili, S.: On a periodic boundary value problem for second-order linear functional differential equations.Bound. Value Probl. 3 (2005), 247-261. Zbl 1106.34039, MR 2202215
Reference: [11] Mukhigulashvili, S.: On a periodic boundary value problem for third order linear functional differential equations.Nonlinear Anal., Theory Methods Appl. 66 (2007), 527-535. Zbl 1157.34340, MR 2279544, 10.1016/j.na.2005.11.046
Reference: [12] Mukhigulashvili, S.: On a periodic boundary value problem for forth order linear functional differential equations.Georgian Math. J. 14 (2007), 533-542. MR 2352323
Reference: [13] Šremr, J.: Solvability conditions of the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators.Math. Bohem. 132 (2007), 263-295. Zbl 1174.34049, MR 2355659
Reference: [14] Hakl, R., Mukhigulashvili, S.: On one estimate for periodic functions.Georgian Math. J. 12 (2005), 97-114. Zbl 1081.26010, MR 2136888
Reference: [15] Bravyi, E. I.: On the solvability of the periodic boundary value problem for a linear functional differential equation.Bulletin of Udmurt Univ. Mathematics, Mechanics, Computer Science. Izhevsk 3 (2009), 12-24 Russian. MR 2384909
.

Files

Files Size Format View
MathBohem_136-2011-2_3.pdf 253.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo