Article
Keywords:
operads; Morita theorems
Summary:
We extend a result of M. M. Kapranov and Y. Manin concerning the Morita theory for linear operads. We also give a cyclic operad version of their result.
References:
[3] Kelly, G. M.:
On the operads of J. P. May. Represent. Theory Appl. Categ. (13) (2005), 1–13, electronic.
MR 2177746 |
Zbl 1082.18009
[4] Lam, T. Y.:
Lectures on modules and rings. Graduate Texts in Mathematics ed., no. 189, Springer–Verlag, New York, 1999.
MR 1653294 |
Zbl 0911.16001
[5] Markl, M.:
Operads and PROPs. Handbook of algebra ed., vol. 5, Elsevier, North–Holland, Amsterdam, 2008.
MR 2523450 |
Zbl 1211.18007
[6] Pareigis, B.:
Non–additive ring and module theory. I. General theory of monoids. Publ. Math. Debrecen 24 (1–2) (1977), 189–204.
MR 0450361 |
Zbl 0377.16021
[7] Pareigis, B.:
Non-additive ring and module theory. II. $C$–categories, $C$–functors and $C$–morphisms. Publ. Math. Debrecen 24 (3–4) (1977), 351–361.
MR 0498792
[8] Pareigis, B.:
Non-additive ring and module theory. III. Morita equivalences. Publ. Math. Debrecen 25 (1–2) (1978), 177–186.
MR 0498793 |
Zbl 0377.16023
[9] Rezk, C.:
Spaces of algebra structures and cohomology of operads. Ph.D. thesis, MIT, 1996.
MR 2716655
[10] Vitale, E. M.:
Monoidal categories for Morita theory. Cahiers Topologie Géom. Différentielle Catég. 33 (1992), 331–343.
MR 1197429 |
Zbl 0850.18005