Previous |  Up |  Next

Article

Keywords:
operads; Morita theorems
Summary:
We extend a result of M. M. Kapranov and Y. Manin concerning the Morita theory for linear operads. We also give a cyclic operad version of their result.
References:
[1] Fresse, B.: Lie theory of formal groups over an operad. J. Algebra 202 (2) (1998), 455–511. DOI 10.1006/jabr.1997.7280 | MR 1617616 | Zbl 1041.18009
[2] Kapranov, M. M., Manin, Y.: Modules and Morita theorem for operads. Amer. J. Math. 123 (5) (2001), 811–838. DOI 10.1353/ajm.2001.0033 | MR 1854112 | Zbl 1001.18004
[3] Kelly, G. M.: On the operads of J. P. May. Represent. Theory Appl. Categ. (13) (2005), 1–13, electronic. MR 2177746 | Zbl 1082.18009
[4] Lam, T. Y.: Lectures on modules and rings. Graduate Texts in Mathematics ed., no. 189, Springer–Verlag, New York, 1999. MR 1653294 | Zbl 0911.16001
[5] Markl, M.: Operads and PROPs. Handbook of algebra ed., vol. 5, Elsevier, North–Holland, Amsterdam, 2008. MR 2523450 | Zbl 1211.18007
[6] Pareigis, B.: Non–additive ring and module theory. I. General theory of monoids. Publ. Math. Debrecen 24 (1–2) (1977), 189–204. MR 0450361 | Zbl 0377.16021
[7] Pareigis, B.: Non-additive ring and module theory. II. $C$–categories, $C$–functors and $C$–morphisms. Publ. Math. Debrecen 24 (3–4) (1977), 351–361. MR 0498792
[8] Pareigis, B.: Non-additive ring and module theory. III. Morita equivalences. Publ. Math. Debrecen 25 (1–2) (1978), 177–186. MR 0498793 | Zbl 0377.16023
[9] Rezk, C.: Spaces of algebra structures and cohomology of operads. Ph.D. thesis, MIT, 1996. MR 2716655
[10] Vitale, E. M.: Monoidal categories for Morita theory. Cahiers Topologie Géom. Différentielle Catég. 33 (1992), 331–343. MR 1197429 | Zbl 0850.18005
Partner of
EuDML logo