Previous |  Up |  Next

Article

Keywords:
one term difference operator; recessive system of solutions; $p$-critical operator; sub/supercritical operator
Summary:
We investigate the criticality of the one term $2n$-order difference operators $l(y)_k = \Delta ^n (r_k \Delta ^n y_k)$. We explicitly determine the recessive and the dominant system of solutions of the equation $l(y)_k = 0$. Using their structure we prove a criticality criterion.
References:
[1] Agarwal, R. P.: Difference equations and inequalities, theory, methods, and applications. Pure Appl. Math. (1992), M. Dekker, New York, Basel, Hong Kong. MR 1155840 | Zbl 0925.39001
[2] Ahlbrandt, C. D., Peterson, A. C.: Discrete Hamiltonian systems: Difference equations, continued fractions, and Riccati equations. Kluwer Academic Publishers, Boston, 1996. MR 1423802 | Zbl 0860.39001
[3] Bohner, M.: Linear Hamiltonian difference systems: Disconjugacy and Jacobi–type condition. J. Math. Anal. Appl. 199 (1996), 804–826. DOI 10.1006/jmaa.1996.0177 | MR 1386607
[4] Bohner, M., Došlý, O.: Disconjugacy and transformations for symplectic systems. Rocky Mountain J. Math. 27 (1997), 707–743. DOI 10.1216/rmjm/1181071889 | MR 1490271
[5] Bohner, M., Došlý, O., Kratz, W.: A Sturmian theorem for recessive solutions of linear Hamiltonian difference systems. Appl. Math. Lett. 12 (1999), 101–106. DOI 10.1016/S0893-9659(98)00156-6 | MR 1749755
[6] Došlý, O.: Oscillation criteria for higher order Sturm–Liouville difference equations. J. Differ. Equations Appl. 4 (1998), 425–450. DOI 10.1080/10236199808808154 | MR 1665162
[7] Došlý, O., Hasil, P.: Critical higher order Sturm–Liouville difference operators. J. Differ. Equations Appl., to appear.
[8] Došlý, O., Komenda, J.: Conjugacy criteria and principal solutions of self–adjoint differential equations. Arch. Math. (Brno) 31 (1995), 217–238. MR 1368260
[9] Erbe, L., Yan, P.: Qualitative properties of Hamiltonian difference systems. J. Math. Anal. Appl. 171 (1992), 334–345. DOI 10.1016/0022-247X(92)90347-G | MR 1194083 | Zbl 0768.39001
[10] Gesztesy, F., Zhao, Z.: Critical and subcritical Jacobi operators defined as Friedrichs extensions. J. Differential Equations 103 (1993), 68–93. DOI 10.1006/jdeq.1993.1042 | MR 1218739 | Zbl 0807.47004
[11] Kratz, W.: Quadratic functionals in variational analysis and control theory. Mathematical topics, Volume 6, Akademie Verlag, Berlin, 1995. MR 1334092 | Zbl 0842.49001
[12] Kratz, W.: Sturm–Liouville difference equations and banded matrices. Arch. Math. (Brno) 36 (2000), 499–505. MR 1822819 | Zbl 1072.39500
[13] Kratz, W.: Banded matrices and difference equations. Linear Algebra Appl. 337 (2001), 1–20. DOI 10.1016/S0024-3795(01)00328-7 | MR 1856849 | Zbl 1002.39028
Partner of
EuDML logo