Previous |  Up |  Next

Article

Title: Hall exponents of matrices, tournaments and their line digraphs (English)
Author: Brualdi, Richard A.
Author: Kiernan, Kathleen P.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 2
Year: 2011
Pages: 461-481
Summary lang: English
.
Category: math
.
Summary: Let $A$ be a square $(0,1)$-matrix. Then $A$ is a Hall matrix provided it has a nonzero permanent. The Hall exponent of $A$ is the smallest positive integer $k$, if such exists, such that $A^k$ is a Hall matrix. The Hall exponent has received considerable attention, and we both review and expand on some of its properties. Viewing $A$ as the adjacency matrix of a digraph, we prove several properties of the Hall exponents of line digraphs with some emphasis on line digraphs of tournament (matrices). (English)
Keyword: Hall matrix
Keyword: Hall exponent
Keyword: irreducible
Keyword: primitive
Keyword: tournament (matrix)
Keyword: line digraph
MSC: 05C20
MSC: 15A15
MSC: 15B34
idZBL: Zbl 1249.15008
idMR: MR2905416
DOI: 10.1007/s10587-011-0066-2
.
Date available: 2011-06-06T10:35:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141546
.
Reference: [1] Aigner, M.: On the line graph of a directed graph.Math. Z. 102 (1967), 56-61. MR 0216981, 10.1007/BF01110285
Reference: [2] Brualdi, R. A., Kiernan, K. P.: Landau's and Rado's theorems and partial tournaments.Electron. J. Comb. 16 (2009). Zbl 1159.05014, MR 2475542
Reference: [3] Brualdi, R. A., Li, Q.: The interchange graph of tournaments with the same score vector.In: Progress in Graph Theory (Waterloo, Ont. 1982) Academic Press Toronto, ON (1984), 129-151. Zbl 0553.05039, MR 0776798
Reference: [4] Brualdi, R. A., Liu, B.: Hall exponents of Boolean matrices.Czechoslovak Math. J. 40(115) (1990), 659-670. Zbl 0737.05028, MR 1084901
Reference: [5] Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory.Cambridge Univ. Press Cambridge (1991). Zbl 0746.05002, MR 1130611
Reference: [6] Hemminger, R. L., Beineke, L. W.: Line graphs and line digraphs.Selected Topics in Graph Theory Academic Press, New York, 271-305 (1978). Zbl 0434.05056
Reference: [7] Huang, Y., Liu, B.: On a conjecture for fully indecomposable exponent and Hall exponent.Linear Multilinear Algebra 58 (2010), 699-710. Zbl 1201.15014, MR 2722753, 10.1080/03081080902843554
Reference: [8] Liu, B., Zhou, Bo: Estimates on strict Hall exponents.Australas. J. Comb. 19 (1999), 129-135. MR 1695868
Reference: [9] Liu, B., Zhou, Bo: On the Hall exponents of Boolean matrices.Linear Multilinear Algebra 46 (1999), 165-175. MR 1708586, 10.1080/03081089908818611
Reference: [10] Moon, J. W., Pullman, N. J.: On the powers of tournament matrices.J. Comb. Theory 3 (1967), 1-9. Zbl 0166.00901, MR 0213264, 10.1016/S0021-9800(67)80009-7
Reference: [11] Schwarz, Š.: The semigroup of fully indecomposable relations and Hall relations.Czechoslovak Math. J. 23(98) (1973), 151-163. Zbl 0261.20057, MR 0316612
Reference: [12] Tan, S., Liu, B., Zhang, D.: Extreme tournaments with given primitive exponents.Australas. J. Comb. 28 (2003), 81-91. MR 1998863
.

Files

Files Size Format View
CzechMathJ_61-2011-2_13.pdf 312.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo