Previous |  Up |  Next

Article

Keywords:
curvature functionals; variational problems; affine curves
Summary:
After having given the general variational formula for the functionals indicated in the title, the critical points of the integral of the equi-affine curvature under area constraint and the critical points of the full-affine arc-length are studied in greater detail. Notice. An extended version of this article is available on arXiv:0912.4075.
References:
[1] Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Tenth Printing). National Bureau of Standards, Washington (1972). MR 0757537
[2] Arreaga, G., Capovilla, R., Chryssomalakos, C., Guven, J.: Area-Constrained Planar Elastica. Physical Review E 65 (2002), 14 pages. DOI 10.1103/PhysRevE.65.031801
[3] Blaschke, W.: Vorlesungen über Differentialgeometrie. I: Elementare Differentialgeometrie. Springer, Berlin (1923).
[4] Blaschke, W.: Vorlesungen über Differentialgeometrie. II: Affine Differentialgeometrie. Springer, Berlin (1923).
[5] Blaschke, W.: Vorlesungen über Differentialgeometrie. III: Differentialgeometrie der Kreise und Kugeln. Springer, Berlin (1929).
[6] Blaschke, W.: Ebene Kinematik (Eine Vorlesung). Teubner, Leipzig (1938).
[7] Bol, G.: Beantwoording van Prijsvraag 13, 1934. Nieuw Archief voor Wiskunde 20 (1940), 113-162. MR 0001045
[8] Bottema, O.: Vlakke Krommen met de Affiene Natuurlijke Vergelijking $k = c\wp(s)$. Nieuw Archief voor Wiskunde 21 (1941), 89-100. MR 0017999
[9] Cartan, É.: Sur un Problème du Calcul des Variations en Géométrie Projective Plane. Matematicheskii Sbornik 34 (1927), 349-364.
[10] Gălugăreanu, G., Gheorghiu, G. T.: Sur l'Interprétation Géométrique des Invariants Différentiels Fondamentaux en Géométrie Affine et Projective des Courbes Planes. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie 43 (1941), 69-83. MR 0012877
[11] Huang, Rongpei: A Note on the Generalized Subaffine Elastica in $\mathbb{R}^2$. Chinese Quarterly Journal of Mathematics. Shuxue Jikan 18 (2003), 88-92. MR 2002097
[12] Heil, E.: Abschätzungen für einige Affininvarianten konvexer Kurven. Monatshefte für Mathematik {71} (1967), 405-423. MR 0230233 | Zbl 0153.50902
[13] Leichtweiss, K.: The Affine Geometry of Convex Bodies. Johann Ambrosius Barth, Heidelberg (1998). MR 1630116
[14] Li, An-Min: Variational Formulae for Higher Affine Mean Curvatures. Results in Mathematics 13 (1988), 318-326. DOI 10.1007/BF03323248 | MR 0941338
[15] Li, An-Min, Simon, U., Zhao, Guo-Song: Global Affine Differential Geometry of Hypersurfaces. De Gruyter Expositions in Mathematics 11. Walter de Gruyter, Berlin (1993). MR 1257186
[16] Mihăilescu, T.: Géométrie Différentielle Affine des Courbes Planes. Czech. Math. J. 9 (1959), 84 265-288. MR 0105704
[17] Mihăilescu, T.: Sobre la Variación del Arco Afín de las Curvas Planas. Mathematicae Notae 17 (1959/1961), 59-81. MR 0146691
[18] Schirokow, A. P., Schirokow, P. A.: Affine Differentialgeometrie. B.G. Teubner, Leipzig (1962). MR 0150666 | Zbl 0106.14703
[19] Tutaev, L. K.: Lines and Surfaces in Three-Dimensional Affine Space. Israel Program for Scientific Translations, Jerusalem (1964). MR 0180927
[20] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis: an Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions. Third Edition, Cambridge University Press (1920). MR 1424469
[21] Verpoort, S.: Curvature Functionals for Curves in the Equi-Affine Plane (an extended version of the current article). arXiv:0912.4075. MR 2905414
Partner of
EuDML logo