Previous |  Up |  Next

Article

Keywords:
$n$-flat module; $n$-FP-injective module; $n$-coherent ring; cotorsion theory
Summary:
In this paper, we study the existence of the $n$-flat preenvelope and the $n$-FP-injective cover. We also characterize $n$-coherent rings in terms of the $n$-FP-injective and $n$-flat modules.
References:
[1] Aldrich, S. T., Enochs, E. E., Rozas, J. R. García, Oyonarte, L.: Covers and envelopes in Grothendieck categories: Flat covers of complexes with applications. J. Algebra 243 (2001), 615-630. DOI 10.1006/jabr.2001.8821 | MR 1850650
[2] Chase, S. U.: Direct products of modules. Trans. Am. Math. Soc. 97 (1961), 457-473. DOI 10.1090/S0002-9947-1960-0120260-3 | MR 0120260 | Zbl 0100.26602
[3] Chen, J., Ding, N.: On $n$-coherent rings. Commun. Algebra 24 (1996), 3211-3216. DOI 10.1080/00927879608825742 | MR 1402554 | Zbl 0877.16010
[4] Ding, N.: On envelopes with the unique mapping property. Commun. Algebra 24 (1996), 1459-1470. DOI 10.1080/00927879608825646 | MR 1380605 | Zbl 0863.16005
[5] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics, 30 Walter de Gruyter Berlin (2000). MR 1753146 | Zbl 0952.13001
[6] Lee, S. B.: $n$-coherent rings. Commun. Algebra 30 (2002), 1119-1126. DOI 10.1080/00927870209342374 | MR 1892593 | Zbl 1022.16001
Partner of
EuDML logo