Previous |  Up |  Next

Article

Keywords:
ideal of subsets of natural numbers; Bolzano-Weierstrass theorem; Bolzano-Weierstrass property; ideal convergence; statistical density; statistical convergence; subsequence; monotone sequence; Ramsey's theorem
Summary:
We consider various forms of Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem which are connected with ideals of subsets of natural numbers. We characterize ideals with properties considered. We show that, in a sense, Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem characterize the same class of ideals. We use our results to show some versions of density Ramsey's theorem (these are similar to generalizations shown in [P. Frankl, R. L. Graham, and V. Rödl: Iterated combinatorial density theorems. J. Combin. Theory Ser. A 54 (1990), 95–111].
References:
[1] Alcántara, D. Meza: Ideals and filters on countable set. PhD thesis Universidad Nacional Autónoma de México (2009).
[2] Baumgartner, J. E., Taylor, A. D., Wagon, S.: Structural Properties of Ideals. Diss. Math. 197 (1982). MR 0687276 | Zbl 0549.03036
[3] Booth, D.: Ultrafilters on a countable set. Ann. Math. Logic 2 (1970), 1-24. DOI 10.1016/0003-4843(70)90005-7 | MR 0277371 | Zbl 0231.02067
[4] Burkill, H., Mirsky, L.: Monotonicity. J. Math. Anal. Appl. 41 (1973), 391-410. DOI 10.1016/0022-247X(73)90214-X | MR 0335714 | Zbl 0268.26007
[5] Farah, I.: Semiselective coideals. Mathematika 45 (1998), 79-103. DOI 10.1112/S0025579300014054 | MR 1644345 | Zbl 0903.03029
[6] Farah, I.: Analytic Quotients: Theory of Liftings for Quotients over Analytic Ideals on the Integers. Mem. Am. Math. Soc 702 (2000). MR 1711328 | Zbl 0966.03045
[7] Filipów, R., Mrożek, N., Recław, I., Szuca, P.: Ideal convergence of bounded sequences. J. Symb. Log. 72 (2007), 501-512. DOI 10.2178/jsl/1185803621 | MR 2320288
[8] Filipów, R., Szuca, P.: Density versions of Schur's theorem for ideals generated by submeasures. J. Comb. Theory, Ser. A 117 (2010), 943-956. DOI 10.1016/j.jcta.2009.12.005 | MR 2652104 | Zbl 1230.05036
[9] Frankl, P., Graham, R. L., Rödl, V.: Iterated combinatorial density theorems. J. Comb. Theory, Ser. A 54 (1990), 95-111. DOI 10.1016/0097-3165(90)90008-K | MR 1051781
[10] Kojman, M.: Van der Waerden spaces. Proc. Am. Math. Soc. 130 (2002), 631-635. DOI 10.1090/S0002-9939-01-06116-0 | MR 1866012 | Zbl 0979.54036
[11] Mazur, K.: $F_\sigma$-ideals and $\omega_1\omega_1^*$-gaps in the Boolean algebras {$P(\omega)/I$}. Fundam. Math. 138 (1991), 103-111. DOI 10.4064/fm-138-2-103-111 | MR 1124539
[12] Samet, N., Tsaban, B.: Superfilters, Ramsey theory, and van der Waerden's theorem. Topology Appl. 156 (2009), 2659-2669. DOI 10.1016/j.topol.2009.04.014 | MR 2561218 | Zbl 1231.05272
[13] Shelah, S.: Proper Forcing. Lecture Notes in Mathematics, Vol. 940. Springer Berlin (1982). DOI 10.1007/BFb0096536 | MR 0675955
[14] Solecki, S.: Analytic ideals and their applications. Ann. Pure Appl. Logic 99 (1999), 51-72. DOI 10.1016/S0168-0072(98)00051-7 | MR 1708146 | Zbl 0932.03060
[15] Todorcevic, S.: Topics in Topology. Lecture Notes in Mathematics, Vol. 1652 Springer Berlin (1997). DOI 10.1007/BFb0096295 | MR 1442262 | Zbl 0953.54001
Partner of
EuDML logo