Article
Keywords:
operator ideals; $s$-numbers
Summary:
Let $ 1\leq q <p < \infty $ and $1/r := 1/p \max (q/2, 1)$. We prove that ${\scr L}_{r,p}^{(c)}$, the ideal of operators of Geľfand type $l_{r,p}$, is contained in the ideal $\Pi _{p,q}$ of $(p,q)$-absolutely summing operators. For $q>2$ this generalizes a result of G. Bennett given for operators on a Hilbert space.
References:
[3] Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976).
[5] König, H.:
Interpolation of operator ideals with an application to eigenvalue distribution problems. Math. Ann. 233 (1978), 35-48.
DOI 10.1007/BF01351495 |
MR 0482266
[6] König, H.:
Eigenvalue Distribution of Compact Operators. Birkhäuser, Basel (1986).
MR 0889455
[11] Triebel, H.:
Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978).
MR 0503903 |
Zbl 0387.46033